• Title/Summary/Keyword: estrogen activity

Search Result 320, Processing Time 0.031 seconds

Effects of Estrogen and Progesterone on the Proliferation and Activity of Osteoblastic cells Abstract (에스트로젠과 프로게스테론이 골모세포의 증식과 활성에 미치는 영향)

  • Ha, Kook-Bong;Kim, Se-Won;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.31 no.2 s.85
    • /
    • pp.237-248
    • /
    • 2001
  • Biomechanical reactions of tooth movement are the combination of bone formation and resorption, in which many paracrine factors are involved. The sex hormone is one of the paracrine factors and the sex hormonal level of an adult female vanes according to the body condition, e.g. mensturation, pregnancy, postmenopause, etc. Although the exact mechanism is not clarified yet, estrogen and progesterone are known to regulate the function of osteoblast. Again osteoblast is reported to affect the function of osteoclast. The purpose of this study is to determine the influence of the female sex hormone, estrogen and progesterone, on the cell proliferation and activity of HOS and ROS17/2.8 cell line. The observed results were as follows. 1. Estrogen inhibited HOS cell proliferation and promoted ROS17/2.8 cell proliferation. 2. Estrogen increased the activity of alkaline phosphatase of HOS cell and reduced the activity of alkaline phosphatase of ROS17/2.8 cell. 3. Progesterone inhibited the proliferation of HOS and ROS17/2.8 cell, but had no influence on the activity of alkaline phosphatase. 4. Estrogen and progeterone did not have any particular effects on the activity of super oxide, nitric oxide and gelatinase of HOS and ROS17/2.8 cell.

  • PDF

$Ginsenoside-R_{b1}$ Acts as a Weak Phytoestrogen in MCF-7 Human Breast Cancer Cells

  • Lee, Young-Joo;Jin, Young-Ran;Lim, Won-Chung;Park, Wan-Kyu;Cho, Jung-Yoon;Jang, Si-Youl;Lee, Seung-Ki
    • Archives of Pharmacal Research
    • /
    • v.26 no.1
    • /
    • pp.58-63
    • /
    • 2003
  • Ginseng has been recommended to alleviate the menopausal symptoms, which indicates that components of ginseng very likely contain estrogenic activity. We have examined the possibility that a component of Panax ginseng, $ginsenoside-R_{b1}$ acts by binding to estrogen receptor. We have investigated the estrogenic activity of $ginsenoside-R_{b1}$ in a transient transfection system using estrogen-responsive luciferase plasmids in MCF-7 cells. $ginsenoside-R_{b1}$ activated the transcription of the estrogen-responsive luciferase reporter gene in MCF-7 breast cancer cells at a concentration of 50 $\mu$M. Activation was inhibited by the specific estrogen receptor antagonist ICI 182,780, indicating that the estrogenic effect of $ginsenoside-R_{b1}$ is estrogen receptor dependent. Next, we evaluated the ability of $ginsenoside-R_{b1}$ to induce the estrogen-responsive gene c-fos by semi-quantitative RT-PCR assays and Western analyses. $ginsenoside-R_{b1}$ increased c-fos both at mRNA and protein levels. However, $ginsenoside-R_{b1}$ failed to activate the glucocorticoid receptor, the retinoic acid receptor, or the androgen receptor in CV-1 cells transiently transfected with the corresponding steroid hormone receptors and hormone responsive reporter plasmids. These data support our hypothesis that $ginsenoside-R_{b1}$ acts a weak phytoestrogen, presumably by binding and activating the estrogen receptor.

Endocrinic Effects of Toxaphene and Chlordane in Human Hepatoma Cell (HepG2 Cell) Transfected with Estrogen Receptor and Luciferase Reporter Gene (에스트로겐 수용체 및 Luciferase 리포터 유전자 도입 사람 간 종양세포(HepG2 Cell)에서 Toxaphene과 Chlordane의 내분비 독성)

  • Kim Kyeong-Bae;Jung Ji-Won;Yang Se-Ran;Kang Kyung-Sun;Lee Yong-Soon
    • Toxicological Research
    • /
    • v.20 no.3
    • /
    • pp.205-211
    • /
    • 2004
  • Concern that some chemicals in our environment may affect human health by disrupt-ing normal endocrine function has prompted a research on interactions of environmental contaminants with steroid hormone receptor. Toxaphene and chlordane are among the 12 persistent organic pollutants identified by the United Nations Environment Programme as requiring urgent attention. We compared the estrogenic activity of two organochlorine pesticides, toxaphene and chlordane, at estrogen receptor a (ER$\alpha$) and estrogen receptor $\beta$ (ER$\beta$). Human hepatoma cells (HepG2) were transiently transfected with rat ER$\alpha$ or ER$\beta$ plus an estrogen-responsive complement C3-luciferase (C3-Luc) reporter gene. After transfection, cells were treated with various concentrations of toxaphene and chlordane to investigate agonism or antagonism of these chemicals. Both toxaphene and chlordane were potent agonists in HepG2 cells for ER$\alpha$. In contrast, these chemicals had a minimal agonist activity with ER$\beta$ and almost abolished 17$\beta$-estradiol-induced ER$\beta$-mediated activity. Therefore, toxaphene and chlordane behaved as an ER$\alpha$ agonist and an ER$\beta$ antagonist with estrogen-responsive reporter plasmid C3-Luc, and exposure to these organochlorine pesticides could have a crictical effect on normal endocrine function.

Sterol Composition and Phytoestrogen Activity of Safflower(Carthamus tinctorius L.) Seed (홍화(Carthamus tinctorius L.)씨의 sterol 및 Phytoestrogen 분석)

  • 최영주;최상욱
    • Journal of Life Science
    • /
    • v.13 no.4
    • /
    • pp.529-534
    • /
    • 2003
  • This study was done to investigated the phytosterol compositions of safflower (Carthamus tinctorius L.) seed. The phytoestrogen activity was also determined using CAT-ELISA Kit in ethanol extract of safflower seed. The phytosterol of safflower seeds was identified using gas chromatography-mass spectrometry after saponification of the oils. The phytosterol content and composition of safflower seed oils were 4% and identified stigmast-5-en-3-ol (3$\beta$, 24S)-form, ${\gamma}$-sitosterol (clionasterol) with Wiley MS spectrum library. The synergistic effect of human estrogen receptor (hER) has been investigated using a minimal chimeric promoters composed of the TATA region of the adenovirus-2 major late promoter (A22MLP) and two consensus perfectly polindromic Xenopus vitellogenin A2 gene estrogen responsive elements (XVEREl19). Transient transfection experiments in tile human breast adenocarcinoma cell line MCF-7, which is known to express the estrogen receptor endogenously, revealed that phytoestrogen from Carthamus tinctorius L. acts as estrogen. We have observed the transcriptional activities stimulated methanol and ethanol extract of safflower seed in MCF-7, were 0.43 and 0.37 respectively, compared to that by $\beta$-estradiol as 1.0. Our data showed that safflower seeds have estrogenic activity methanol and ethanol extracts and ethanol lower than that of $\beta$-estradiol. This result provides the first evidence that the beneficial effect of safflower seeds may be mediated, at least in part, by the stimulating effect of phytoestrogen ell bone-protecting.

Extra-gonadal sites of estrogen biosynthesis and function

  • Barakat, Radwa;Oakley, Oliver;Kim, Heehyen;Jin, Jooyoung;Ko, CheMyong Jay
    • BMB Reports
    • /
    • v.49 no.9
    • /
    • pp.488-496
    • /
    • 2016
  • Estrogens are the key hormones regulating the development and function of reproductive organs in all vertebrates. Recent evidence indicates that estrogens play important roles in the immune system, cancer development, and other critical biological processes related to human well-being. Obviously, the gonads (ovary and testis) are the primary sites of estrogen synthesis, but estrogens synthesized in extra- gonadal sites play an equally important role in controlling biological activities. Understanding non-gonadal sites of estrogen synthesis and function is crucial and will lead to therapeutic interventions targeting estrogen signaling in disease prevention and treatment. Developing a rationale targeting strategy remains challenging because knowledge of extra-gonadal biosynthesis of estrogens, and the mechanism by which estrogen activity is exerted, is very limited. In this review, we will summarize recent discoveries of extra-gonadal sites of estrogen biosynthesis and their local functions and discuss the significance of the most recent novel discovery of intestinal estrogen biosynthesis.

Effects of Amydae Carapax on Bone Metabolism in Ovariectomized Rats (난소 절제 흰쥐의 골대사에 미치는 별갑의 영향)

  • 박종혁;윤철호;정지천
    • The Journal of Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.54-62
    • /
    • 2002
  • Objectives : This study was undertaken to investigate the effects of Amydae Carapax (AC) on parameter related to bone metabolism in ovariectomized rats. Methods : We measured alkaline phosphatase activity and contents of estrogen, calcium, hydroxyproline, osteocalcin, calcitonin and parathyroid hormone after the ovariectomized rats were treated with AC for 30 days. Results : Serum estrogen, calcium and calcitonin contents in ovariectomized rats significantly decreased, but increased after AC treatment. [Significant increase of serum alkaline phosphatase activity, parathyroid hormone activity and osteocalcin content in ovariectomized rats was remarkably decreased by AC treatment. Increase of urinary calcium and hydroxyproline content in ovariectomized rats was decreased by AC treatment.] Conclusions : These results shows that AC has the ability to counteract abnormal calcium metabolic processes due to sex hormone inequality, promoting bone absorption and inhibiting bone formation.

  • PDF

Effects of pyrethroid compounds on alkaline phosphatase activity in estrogen receptor positive human breast cancer cells

  • Kim, In-Young;Kang, Il-Hyun;Shin, Jae-Ho;Kim, Hyung-Sik;Lee, Su-Jung;Moon, Hyun-Ju;Kim, Tae-Sung;Shim, Eun-Youn;Moon, A-Ree;Choi, Kwang-Sik;Han, Soon-Young
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.292.2-293
    • /
    • 2002
  • Pyrethroids are one of the most commonly used insecticides in worldwide. but it remains unclear whether pyrethroid compounds possess endocrine disrupting activity or not. T47D cells, an estrogen receptor positive human breast cancer cell line. is known to induce alkaline phosphatase (AlkP) only in response to progestins. Because the action of estrogen may be changed by the action of progestins (Kraus et al. 1995), it is important to examine the potential to produce progestin-mediated effects for determining endocrine disrupting activity of chemicals(LiLorenzo et al. 1991). (omitted)

  • PDF

In Vitro Estrogenic Activity of Silkworm (Bombyx mon) Pupa and Herbs (누에(Bombyx mori) 번데기 및 한약재의 In Vitro 에스트로젠 활성)

  • Yang Ji-Won;Choi Eun-Mi;Kwon Mu-Gil;Koo Sung-Ja
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.15 no.3
    • /
    • pp.315-322
    • /
    • 2005
  • In this study we report on the estrogen activity of silkworm pupa and herb extracts in vitro. The estrogenic activity of these resources was investigated by competition binding assays with estrogen receptor $\alpha(ER{\alpha})\;or\;ER{\beta}$, and viability of MCF-7 cells, a human breast cancer cell line. Saturation ligand-binding analysis of $ER{\alpha}\;and\;ER{\beta}$ revealed that all plant extracts competed with estrogen ligand for binding to both ER subtypes with a similar preference and degree and competed stronger with ligand for binding to $ER{\beta}\;than\;to\;ER{\alpha}$. The highest $ER{\alpha}-binding$ sample was silkworm pupa aqueous extract The highest $ER{\beta}-binding$ sample was silkworm pupa oil. These samples were further tested for bioactivity based on their ability to regulate cell growth rate in ER(+) breast cancer cell line, MCF-7 cells. Our studies showed that silkworm pupa, soritae, sesame, yam, pueraria, malt, ginseng, Polygonum multiflorum, and Curcuma longa significantly stimulated the growth of MCF-7 cells (P<0.05). In summary, these results suggested that silkworm pupa and herbs might be useful as potential phytoestrogens.

  • PDF

Endocrine - Mimicking Phytoestrogens: Health Effects and Signaling

  • Ahn, Hae Sun;Gye, Myung Chan
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.4
    • /
    • pp.479-486
    • /
    • 2004
  • Phytoestrogens display estrogen-like activity because of their structural similarity to human estrogens and exhibit high affinity binding for the estrogen receptors (ERs). The prevalence of phytoestrogens in our diets and the biological effects that they may cause need to be fully examined. ER is the ancestral receptor from which all other steroid receptors have evolved. Although phytoestrogens serve specific signaling functions between the plants and insects, fungi, and bacteria, many chemical signals are often misinterpreted as estrogenic signals in non-target organisms such as vertebrates. There are no ERs in plants or in their most common partners, insects. However, Rhizobium soil bacteria have NodD proteins which is an intended target of phytoestrogen signaling and share genetic homology with the ER. These two evolutionarily distant receptors both recognize and respond to a shared group of chemical signals and ligands, including both agonists and antagonists. This review briefly summarizes estrogen and estrogen receptors, kinds of important phytoestrogens, their health effects as well as some of the evolutionary aspects of mechanism by which phytoestrogen mimics the endogenous ER signaling in our body.

Action Mechanism of Antiestrogens on Uterine Growth in Immature Rats (자궁세포 성장에 미치는 항에스트로젠제의 작용기전)

  • Lee, Jung-Bin;Yoon, Mi-Chung;Kim, Chang-Mee;Hong, Sa-Suk;Ryu, Kyung-Za
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.167-176
    • /
    • 1990
  • In the present study, we examined the effects of tamoxifen and LY117018 on various parameters for the estrogenic actions in order to understand the mechanism by which tamoxifen and LY117018 act on the uterine cells in 21-23 day old immature rats. Tamoxifen and LY117018 stimulated uterine weight and uterine contents of DNA, protein, and peroxidase activity in the absence of estradiol while inhibited above parameters in the presence of estradiol. Both cytosolic and nuclear progesterone receptors were increased by the treatment of tamoxifen and LY117018 as well as estradiol, but estradiol-induced increase in the progesterone receptors were reduced by the treatment of antiestrogens. These effects were enhanced by the multiple injections of antiestrogens. It seemed that tamoxifen was more agonistic than LY117018 but less antagonistic than LY117018, judged by their effects on various parameters for the estrogenic action. The affinities of estradiol, tamoxifen, and LY117018 for the estrogen receptor were $0.17{\pm}0.01nM(100%)$, $1.10{\pm}0.01nM(6.3%)$, and $0.23{\pm}0.01nM(77%)$, respectively. Furthermore, LY117018 was the competitive ligand for the estrogen receptor in dose-related manner but tamoxifen was not. Following estradiol treatment, nuclear estrogen receptor was sharply increased by 1 h, reaching the maximum by 16 h, while tamoxifen and LY117018 slightly increased nuclear estrogen receptor by 1 h and then decreased thereafter. It is therefore concluded that LY117018 is a competitive antagonist for the estrogen receptor with less estrogenic activity, compared to tamoxifen with low affinity to the estrogen receptor, and tamoxifen may act through other binding site than the estrogen receptor.

  • PDF