• Title/Summary/Keyword: estimation performance

Search Result 6,225, Processing Time 0.033 seconds

A Study on Estimating the Crossing Speed of Mobility Handicapped for the Activation of the Smart Crossing System (스마트횡단시스템 활성화를 위한 교통약자의 횡단속도 추정)

  • Hyung Kyu Kim;Sang Cheal Byun;Yeo Hwan Yoon;Jae Seok Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.87-96
    • /
    • 2022
  • The traffic vulnerable, including elderly pedestrians, have a relatively low walking speed and slow cognitive response time due to reduced physical ability. Although a smart crossing system has been developed and operated to improve problem, it is difficult to operate a signal that reflects the appropriate walking speed for each pedestrian. In this study, a neural network model and a multiple regression model-based traversing speed estimation model were developed using image information collected in an area with a high percentage of traffic vulnerability. to support the provision of optimal walking signals according to real-time traffic weakness. actual traffic data collected from the urban traffic network of Paju-si, Gyeonggi-do were used. The performance of the model was evaluated through seven selected indicators, including correlation coefficient and mean absolute error. The multiple linear regression model had a correlation coefficient of 0.652 and 0.182; the neural network model had a correlation coefficient of 0.823 and 0.105. The neural network model showed higher predictive power.

Backpack- and UAV-based Laser Scanning Application for Estimating Overstory and Understory Biomass of Forest Stands (임분 상하층의 바이오매스 조사를 위한 백팩형 라이다와 드론 라이다의 적용성 평가)

  • Heejae Lee;Seunguk Kim;Hyeyeong Choe
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.363-373
    • /
    • 2023
  • Forest biomass surveys are regularly conducted to assess and manage forests as carbon sinks. LiDAR (Light Detection and Ranging), a remote sensing technology, has attracted considerable attention, as it allows for objective acquisition of forest structure information with minimal labor. In this study, we propose a method for estimating overstory and understory biomass in forest stands using backpack laser scanning (BPLS) and unmanned aerial vehicle laser scanning (UAV-LS), and assessed its accuracy. For overstory biomass, we analyzed the accuracy of BPLS and UAV-LS in estimating diameter at breast height (DBH) and tree height. For understory biomass, we developed a multiple regression model for estimating understory biomass using the best combination of vertical structure metrics extracted from the BPLS data. The results indicated that BPLS provided accurate estimations of DBH (R2 =0.92), but underestimated tree height (R2 =0.63, bias=-5.56 m), whereas UAV-LS showed strong performance in estimating tree height (R2 =0.91). For understory biomass, metrics representing the mean height of the points and the point density of the fourth layer were selected to develop the model. The cross-validation result of the understory biomass estimation model showed a coefficient of determination of 0.68. The study findings suggest that the proposed overstory and understory biomass survey methods using BPLS and UAV-LS can effectively replace traditional biomass survey methods.

Estimation of Displacements Using Artificial Intelligence Considering Spatial Correlation of Structural Shape (구조형상 공간상관을 고려한 인공지능 기반 변위 추정)

  • Seung-Hun Shin;Ji-Young Kim;Jong-Yeol Woo;Dae-Gun Kim;Tae-Seok Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • An artificial intelligence (AI) method based on image deep learning is proposed to predict the entire displacement shape of a structure using the feature of partial displacements. The performance of the method was investigated through a structural test of a steel frame. An image-to-image regression (I2IR) training method was developed based on the U-Net layer for image recognition. In the I2IR method, the U-Net is modified to generate images of entire displacement shapes when images of partial displacement shapes of structures are input to the AI network. Furthermore, the training of displacements combined with the location feature was developed so that nodal displacement values with corresponding nodal coordinates could be used in AI training. The proposed training methods can consider correlations between nodal displacements in 3D space, and the accuracy of displacement predictions is improved compared with artificial neural network training methods. Displacements of the steel frame were predicted during the structural tests using the proposed methods and compared with 3D scanning data of displacement shapes. The results show that the proposed AI prediction properly follows the measured displacements using 3D scanning.

An Acoustic Event Detection Method in Tunnels Using Non-negative Tensor Factorization and Hidden Markov Model (비음수 텐서 분해와 은닉 마코프 모델을 이용한 터널 환경에서의 음향 사고 검지 방법)

  • Kim, Nam Kyun;Jeon, Kwang Myung;Kim, Hong Kook
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.9
    • /
    • pp.265-273
    • /
    • 2018
  • In this paper, we propose an acoustic event detection method in tunnels using non-negative tensor factorization (NTF) and hidden Markov model (HMM) applied to multi-channel audio signals. Incidents in tunnel are inherent to the system and occur unavoidably with known probability. Incidents can easily happen minor accidents and extend right through to major disaster. Most incident detection systems deploy visual incident detection (VID) systems that often cause false alarms due to various constraints such as night obstacles and a limit of viewing angle. To this end, the proposed method first tries to separate and detect every acoustic event, which is assumed to be an in-tunnel incident, from noisy acoustic signals by using an NTF technique. Then, maximum likelihood estimation using Gaussian mixture model (GMM)-HMMs is carried out to verify whether or not each detected event is an actual incident. Performance evaluation shows that the proposed method operates in real time and achieves high detection accuracy under simulated tunnel conditions.

Multiple Reference Network Data Processing Algorithms for High Precision of Long-Baseline Kinematic Positioning by GPS/INS Integration (GPS/INS 통합에 의한 고정밀 장기선 동적 측위를 위한 다중 기준국 네트워크 데이터 처리 알고리즘)

  • Lee, Hung-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.135-143
    • /
    • 2009
  • Integrating the Global Positioning System (GPS) and Inertial Navigation System (INS) sensor technologies using the precise GPS Carrier phase measurements is a methodology that has been widely applied in those application fields requiring accurate and reliable positioning and attitude determination; ranging from 'kinematic geodesy', to mobile mapping and imaging, to precise navigation. However, such integrated system may not fulfil the demanding performance requirements when the baseline length between reference and mobil user GPS receiver is grater than a few tens of kilometers. This is because their positioning/attitude determination is still very dependent on the errors of the GPS observations, so-called "baseline dependent errors". This limitation can be remedied by the integration of GPS and INS sensors, using multiple reference stations. Hence, in order to derive the GPS distance dependent errors, this research proposes measurement processing algorithms for multiple reference stations, such as a reference station ambiguity resolution procedure using linear combination techniques, a error estimation based on Kalman filter and a error interpolation. In addition, all the algorithms are evaluated by processing real observations and results are summarized in this paper.

Application of Intensity-Duration-Frequency Curve to Korea Derived by Cumulative Distribution Function (누가분포함수를 활용한 강우강도식의 국내 적용성 평가)

  • Kim, Kewtae;Kim, Taesoon;Kim, Sooyoung;Heo, Jun-Haeng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.363-374
    • /
    • 2008
  • Intensity-Duration-Frequency (IDF) curve that is essential to calculate rainfall quantiles for designing hydraulic structures in Korea is generally formulated by regression analysis. In this study, IDF curve derived by the cumulative distribution function ("IDF by CDF") of the proper probability distribution function (PDF) of each site is suggested, and the corresponding parameters of IDF curve are computed using genetic algorithm (GA). For this purpose, IDF by CDF and the conventional IDF derived by regression analysis ("IDF by REG") were computed for 22 Korea Meteorological Administration (KMA) rainfall recording sites. Comparisons of RMSE (root mean squared error) and RRMSE (Relative RMSE) of rainfall intensities computed from IDF by CDF and IDF by REG show that IDF by CDF is more accurate than IDF by REG. In order to accommodate the effect of the recent intensive rainfall of Korea, the rainfall intensities computed by the two IDF curves are compared with that by at-site frequency analysis using the rainfall data recorded by 2006, and the result from IDF by CDF show the better performance than that from IDF by REG. As a result, it can be said that the suggested IDF by CDF curve would be the more efficient IDF curve than that computed by regression analysis and could be applied for Korean rainfall data.

Physio-mechanical and X-ray CT characterization of bentonite as sealing material in geological radioactive waste disposal

  • Melvin B. Diaz;Sang Seob Kim;Gyung Won Lee;Kwang Yeom Kim;Changsoo Lee;Jin-Seop Kim;Minseop Kim
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.449-459
    • /
    • 2023
  • The design and development of underground nuclear waste repositories should cover the performance evaluation of the different components such as the construction materials because the long term stability will depend on their response to the surrounding conditions. In South Korea, Gyeonju bentonite has been proposed as a candidate to be used as buffer and backfilling material, especially in the form of blocks to speed up the construction process. In this study, various cylindrical samples were prepared with different dry density and water content, and their physical and mechanical properties were analyzed and correlated with X-ray CT observations. The main objective was to characterize the samples and establish correlations for non-destructive estimation of physical and mechanical properties through the utilization of X-ray CT images. The results showed that the Uniaxial Compression Strength and the P-wave velocity have an increasing relationship with the dry density. Also, a higher water content increased the values of the measure parameters, especially for the P-wave velocity. The X-ray CT analysis indicated a clear relation between the mean CT value and the dry density, Uniaxial Compression Strength, and P-wave velocity. The effect of the higher water content was also captured by the mean CT value. Also, the relationship between the mean CT value and the dry density was used to plot CT dry densities using CT images only. Moreover, the histograms also provided information about the samples heterogeneity through the histograms' full width at half maximum values. Finally, the particle size and heterogeneity were also analyzed using the Madogram function. This function identified small particles in uniform samples and large particles in some samples as a result of poor mixing during preparation. Also, the μmax value correlated with the heterogeneity, and higher values represented samples with larger ranges of CT values or particle densities. These image-based tools have been shown to be useful on the non-destructive characterization of bentonite samples, and the establishment of correlations to obtain physical and mechanical parameters solely from CT images.

Assessment of hydrological drought risk in the southern region in 2022: based on bivariate regional drought frequency analysis (2022년 남부지역 수문학적 가뭄위험도 평가: 수문학적 이변량 가뭄 지역빈도해석 중심으로)

  • Kim, Yun-Sung;Jung, Min-Kyu;Kim, Tae-Woong;Jeong, Seung-Myeong;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.151-163
    • /
    • 2023
  • This study explored the 2022 drought over the Nakdong River watershed. Here, we developed a bivariate regional frequency analysis method to evaluate the risk of hydrological drought. Currently, natural streamflow data are generally limited to accurately estimating the drought frequency. Under this circumstance, the existing at site frequency analysis can be problematic in estimating the drought risk. On the other hand, a regional frequency analysis could provide a more reliable estimation of the joint return periods of drought variables by pooling available streamflow data over the entire watershed. More specifically, the Copula-based regional frequency analysis model was proposed to effectively take into account the tail dependencies between drought variables. The results confirmed that the regional frequency analysis model showed better performance in model fit by comparing the goodness-of-fit measures with the at-site frequency analysis model. We find that the estimated joint return period of the 2022 drought in the Nakdong River basin is about eight years. In the case of the Nam river Dam, the joint return period was approximately 20 years, which can be regarded as a relatively severe drought over the last three decades.

Towards high-accuracy data modelling, uncertainty quantification and correlation analysis for SHM measurements during typhoon events using an improved most likely heteroscedastic Gaussian process

  • Qi-Ang Wang;Hao-Bo Wang;Zhan-Guo Ma;Yi-Qing Ni;Zhi-Jun Liu;Jian Jiang;Rui Sun;Hao-Wei Zhu
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.267-279
    • /
    • 2023
  • Data modelling and interpretation for structural health monitoring (SHM) field data are critical for evaluating structural performance and quantifying the vulnerability of infrastructure systems. In order to improve the data modelling accuracy, and extend the application range from data regression analysis to out-of-sample forecasting analysis, an improved most likely heteroscedastic Gaussian process (iMLHGP) methodology is proposed in this study by the incorporation of the outof-sample forecasting algorithm. The proposed iMLHGP method overcomes this limitation of constant variance of Gaussian process (GP), and can be used for estimating non-stationary typhoon-induced response statistics with high volatility. The first attempt at performing data regression and forecasting analysis on structural responses using the proposed iMLHGP method has been presented by applying it to real-world filed SHM data from an instrumented cable-stay bridge during typhoon events. Uncertainty quantification and correlation analysis were also carried out to investigate the influence of typhoons on bridge strain data. Results show that the iMLHGP method has high accuracy in both regression and out-of-sample forecasting. The iMLHGP framework takes both data heteroscedasticity and accurate analytical processing of noise variance (replace with a point estimation on the most likely value) into account to avoid the intensive computational effort. According to uncertainty quantification and correlation analysis results, the uncertainties of strain measurements are affected by both traffic and wind speed. The overall change of bridge strain is affected by temperature, and the local fluctuation is greatly affected by wind speed in typhoon conditions.

Effect of Areal Mean Rainfall Estimation Technique and Rainfall-Runoff Models on Flood Simulation in Samcheok Osipcheon(Riv.) Basin (면적 강우량 산정 기법과 강우-유출 모형이 삼척오십천 유역의 홍수 모의에 미치는 영향)

  • Lee, Hyeonji;Shin, Youngsub;Kang, Dongho;Kim, Byungsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.775-784
    • /
    • 2023
  • In terms of flood management, it is necessary to analyze quantitative rainfall and runoff from a spatial and temporal perspective and to analyze runoff for heavy rainfall events that are concentrated within a short period of time. The simulation and analysis results of rainfall-runoff models vary depending on the type and input data. In particular, rainfall data is an important factor, so calculating areal mean rainfall is very important. In this study, the areal mean rainfall of the Samcheok Osipcheon(Riv.) watersheds located in the mountainous terrain was calculated using the Arithmetic Mean Method, Thiessen's Weighting Method, and the Isohyetal Method, and the rainfall-runoff results were compared by applying the distributional model S-RAT and the lumped model HEC-HMS. The results of the temporal transferability study showed that the combination of the distributional model and the Isohyetal Method had the best statistical performance with MAE of 64.62 m3/s, RMSE of 82.47 m3/s, and R2 and NSE of 0.9383 and 0.8547, respectively. It is considered that this study was properly analyzed because the peak flood volume occurrence time of the observed and simulated flows is within 1 hour. Therefore, the results of this study can be used for frequency analysis in the future, which can be used to improve the accuracy of simulating peak flood volume and peak flood occurrence time in mountainous watersheds with steep slopes.