• 제목/요약/키워드: estimation of noise damage

검색결과 60건 처리시간 0.026초

금속파편 감시 시스템에 대한 시간-주파수 해석 적용 연구 (Application of Time-Frequency Analysis Methods to Loose Part Impact Signal)

  • 박진호;이정한;김봉수;박기용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.361-364
    • /
    • 2003
  • The safe operation and reliable maintenance of nuclear power plants is one of the most fundamental and important tasks. It is known that a loose part such as a disengaged and drifting metal inside of reactor coolant systems might lead to a serious damage because of their impact on the components of the coolant system. In order to estimate the impact position of a loose par, three accelerometers attached to the wall of the coolant system have been used. These accelerometers measure the vibration of the coolant system induced by loose part impact. In the conventional analysis system, the low pass filtered version of the vibration data was used for the estimation of the position of a loose part. It is often difficult to identify the initial point of the impact signal by using just a low passed time signal because the impact wave is dispersed during propagation into the sensor. In this paper, the impact signal is analysed by use of various time frequency methods including the short time Fourier transform(STFT), the wavelet transform, and the Wigner-Vill distribution for finding a convenient way to identify the starting point of a impact signal and their advantages and limits are discussed.

  • PDF

다변량 통계기법을 이용한 K및 n의 산정에 관한 연구 (A Study on the Estimation of Coefficients K and n Using Multivariate Data Analysis)

  • 백용진;최재성;배동명;김경진
    • 한국소음진동공학회논문집
    • /
    • 제13권8호
    • /
    • pp.583-590
    • /
    • 2003
  • For the preestimate of the vibration level of the ground next to a dwelling, a multivariate statistical analysis on the experiment data acquired from a variety of construction sites was performed, and then a new estimate model for the value of K and n that can be applied in the diagnosis of the damage was offered. The results maybe summarized as follows : First, the $K_{95}$ and n showed high correlation at P$\leq$0.05. Specially the correlation coefficient about $W_{max}$, S were higher in $K_{95}$ than in n. indicating that $K_{95}$ is generally associated with source conditions. Second, the factor analysis permitted to identify two major sources in each fraction. These sources accounted for at least 73 % of valiance of $K_{95}$. Third, the multiple regression model for the estimate of $K_{95}$ was developed from Fac1 which depend upon the source conditions and Fac2 which depend upon the transmission conditions. The n value is able to determine from the correlation relationship associated with $K_{95}$./.

노즐 통과 증기에 의한 블레이드에 작용하는 힘 특성 (Characteristics of Blade Force by Nozzle Passing Steam)

  • 이병학;박종호
    • 한국소음진동공학회논문집
    • /
    • 제23권10호
    • /
    • pp.895-901
    • /
    • 2013
  • Last blades of LP turbine in nuclear power plant are the highly damaged part and suffered from nozzle steam impulses during the turbine operation. Nozzle impulse is known as a common cause of damage or failure in the turbine blade and results from steam flow distortions due to uneven steam flow patterns between the stationary blade vanes. If impulse force was continuously acting on the blade for a long time, crack or wear will occur in weak parts such as root. So, it is important to know variation of nozzle impulse during the blade moving. But there is no way to measure and estimate the magnitude and direction of nozzle impulse. Therefore, this study was performed to know the variation of nozzle impulse force according to the positions of the blade and to obtain blade equivalent force and torque. This results can be used for blade stress estimation.

다경간 전열관의 난류 가진에 의한 마모특성 연구 (Wear Characteristics of Multi- span Tube Due to Turbulence Excitation)

  • 김형진;성봉주;박치용;유기완
    • 한국소음진동공학회논문집
    • /
    • 제16권9호
    • /
    • pp.904-911
    • /
    • 2006
  • A modified energy method for the fretting wear of the steam generator tube is proposed to calculate the wear-out depth between the nuclear steam generator tube and its support. Estimation of fretting-wear damage typically requires a non-linear dynamic analysis with the information of the gap velocity and the flow density around the tube. This analysis is very complex and time consuming. The basic concept of the energy method is that the volume wear rate due to the fretting-wear phenomena Is related to work rate which is time rate of the product of normal contact force and sliding distance. The wearing motion is due to dynamic interaction between vibrating tube and its support structure, such as tube support plate and anti-vibration bar. It can be assumed that the absorbed work rate would come from turbulent flow energy around the vibrating tube. This study also numerically obtains the wear-out depth with various wear topologies. A new dissection method is applied to the multi-span tubes to represent the vibrational mode. It turns out that both the secondary side density and the normal gap velocity are important parameters for the fretting-wear phenomena of the steam generator tube.

상시진동을 이용한 남해대교의 동특성 평가 (Estimation of Dynamic Characteristics of Namhae Suspension Bridge Using Ambient Vibration Test)

  • 김남식;김철영;정대성;윤자걸
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.988-993
    • /
    • 2002
  • The AVT under traffic-induced vibrations was carried out on Namhae suspension bridge in Korea. Mode shapes as well as natural frequencies up to the 15th mode were acquired exactly, and the effect of traffic mass and temperature on measured natural frequencies was investigated. The results from the AVT are compared with those from forced vibration test(FVT) and FE analysis. In the case of long span suspension bridges such as Namhae bridge which has relatively large mass, the results shows that the measured natural frequencies are not affected by vehicle mass. From the results of long-term variation of natural frequencies due to temperature change, it can be said that temperature effect may be predominant to structural demage effect. Therefore, if damage detection methods based on dynamic characteristics of bridges are to be used, the variation should be taken into consideration.

  • PDF

저속 2행정 디젤엔진의 과도 비틀림 진동에 의한 축계 피로 강도에 관한 연구 (A Study on Shaft Fatigue Strength due to Torsional Vibrations in Two Stroke Low Speed Diesel Engines)

  • 이돈출;김상환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.786-791
    • /
    • 2006
  • Two stroke low speed diesel engines are mainly used for marine propulsion or power plant prime mover. These have many merits such as higher thermal efficiency, mobility and durability. However various annoying vibrations sometimes occur in ships or at the plant itself. Of these vibrations, torsional vibration is very important and it should be carefully investigated during the initial design stage for engine's safe operation. In this paper authors suggest a new estimation method of for shaft's can be calculated equivalently from accumulated fatigue cycles number due to torsional vibration. The 6S70MC-C($25,320ps{\times}91rpm$) engine for ship propulsion was selected as a case study, and the accumulated fatigue cycles numbers for shafting life time converted from the measured angular velocity and torsional vibration stress was calculated. This new method can be realized and confirmed in test model ship with two stroke low speed diesel engine.

  • PDF

시간영역에서 과도 비틀림 진동에 의한 저속 2행정 디젤엔진의 축계 피로강도 평가 (An Estimation on Two Stroke Low Speed Diesel Engines' Shaft Fatigue Strength due to Torsional Vibrations in Time Domain)

  • 이돈출;김상환
    • 한국소음진동공학회논문집
    • /
    • 제17권7호
    • /
    • pp.572-578
    • /
    • 2007
  • Two stroke low speed diesel engines are widely used for marine propulsion or as power plant prime mover. These engines have many merits which includes higher thermal efficiency, mobility and durability. Yet various annoying vibrations occur sometimes in ships or at the plant itself. Of these vibrations, torsional vibration is very important and dictates a careful investigation during the engme's initial design stage for safe operation. With the rule and limit on torsional vibration in place, shaft strength fatigue due to torsional vibration however demands further analysis which possibly can be incorporated in the classification societies' rule and limit. In addition, the shaft's torsional vibration stresses can be calculated equivalently from accumulated fatigue cycles number due to transient torsional vibration in time domain. In this paper, authors suggest a new estimation method combined with Palmgren-Miner equation. A 6S70MC-C ($25,320ps{\times}91rpm$) engine for ship propulsion was selected as a case study. Angular velocity was measured, instead of shaft's strain, for simplified measurement and it was converted to torsional vibration stress for accumulated fatigue cycle numbers in shafting life time. Likewise, the accumulated fatigue calculation was compared with shaft fatigue strength limit. This new method can be further realized and confirmed in ship with two stroke low speed diesel engine.

부탄 캔 파열로 인한 인체피해예측에 관한 연구 (A Study on Estimation of Human Damage Caused by Rupture of Butane Can)

  • 임사환;허용정;최성주;이종락;임동연
    • 한국안전학회지
    • /
    • 제22권3호
    • /
    • pp.98-104
    • /
    • 2007
  • 산업사회의 발전과 더불어 인간의 삶에 대한 욕구도 날로 급변하고 있으며, 주 40시간제가 도입되면서 피크닉을 즐기는 세대가 늘어나고 있는 실정이다. 또한 가스에 의한 사고는 토요일과 일요일에 가장 많이 발생하고 있다. 따라서 가스안전교육원에서는 이러한 가스의 폭발사고에 대한 영향이 매우 위험하다는 것을 교육생에게 알려 현장에서 가스안전관리에 만전을 기하도록 하고자 폭발실험을 실시하고 있다. 본 논문에서는 이러한 폭발실험으로 교육에 참관하는 교육생에게 미치는 영향을 알아보고자 폭발로 인한 과압은 Hopkinson의 삼승근법을 이용하여 계산하고, 인간에게 미치는 영향은 Probit 모델에 적용하여 사고피해예측을 평가하였다. 폭발위치에서 50m 떨어진 곳에서의 피크과압은 1.35kPa이고, 25m 떨어진 곳에서는 3.2kPa이다. 이 값은 Probit 모델에 적용하면 손상가능성이 0%로 나타났다.

탄성파 간섭법 탐사를 이용한 건축물 손상 평가 및 모니터링 (Assessment and Monitoring of Structural Damage Using Seismic Wave Interferometry)

  • 정인석;조아현;남명진
    • 지구물리와물리탐사
    • /
    • 제27권2호
    • /
    • pp.144-153
    • /
    • 2024
  • 최근 탄성파를 기반으로 건축물 안전진단(structure health monitoring, SHM)을 수행하는 방법들에 대한 연구들이 많이 수행되고 있다. 특히 지구물리탐사에서 주로 적용되어 오던 배경 잡음을 이용하는 탄성파 간섭법(seismic interferometry)이 SHM에 많이 적용되고 있다. 탄성파가 건축물 내부로 전파하며 발생하는 건축물의 반응을 분석하여 건축물의 강성 변화를 추정할 수 있을 뿐만 아니라, 건축물의 손상 여부와 그 위치도 평가할 수 있다. SHM에 적용되는 탄성파 간섭법에 대해 분석한 뒤 실제 적용 사례들도 분석한 결과, 탄성파 간섭법은 건축물의 안정성 평가나 모니터링 등에 적용할 수 있는 건축물 손상 탐지 평가 방법으로써 매우 효과적으로 활용할 수 있다고 판단된다.

Field Attenuation of Foam Earplugs

  • Copelli, Fran;Behar, Alberto;Le, Tina Ngoc;Russo, Frank A.
    • Safety and Health at Work
    • /
    • 제12권2호
    • /
    • pp.184-191
    • /
    • 2021
  • Background: Hearing protection devices (HPDs) are often used in the workplace to prevent hearing damage caused by noise. However, a factor that can lead to hearing loss in the workplace is improper HPD fitting, and the previous literature has shown that instructing workers on how to properly insert their HPDs can make a significant difference in the degree of attenuation. Methods: Two studies were completed on a total of 33 Hydro One workers. A FitCheck Solo field attenuation estimation system was used to measure the personal attenuation rating (PAR) before and after providing one-on-one fitting instructions. In addition, external ear canal diameters were measured, and a questionnaire with items related to frequency of use, confidence, and discomfort was administered. Results: Training led to an improvement in HPD attenuation, particularly for participants with poorer PARs before training. The questionnaire results indicated that much HPD discomfort is caused by heat, humidity, and communication difficulties. External ear canal asymmetry did not appear to significantly influence the measured PAR. Conclusion: In accordance with the previous literature, our studies suggest that one-on-one instruction is an effective training method for HPD use. Addressing discomfort issues from heat, humidity, and communication issues could help to improve the use of HPDs in the workplace. Further research into the effects of canal asymmetry on the PAR is needed.