• 제목/요약/키워드: estimation by learning

검색결과 613건 처리시간 0.025초

딥러닝 기술을 이용한 3차원 객체 추적 기술 리뷰 (A Review of 3D Object Tracking Methods Using Deep Learning)

  • 박한훈
    • 융합신호처리학회논문지
    • /
    • 제22권1호
    • /
    • pp.30-37
    • /
    • 2021
  • 카메라 영상을 이용한 3차원 객체 추적 기술은 증강현실 응용 분야를 위한 핵심 기술이다. 영상 분류, 객체 검출, 영상 분할과 같은 컴퓨터 비전 작업에서 CNN(Convolutional Neural Network)의 인상적인 성공에 자극 받아, 3D 객체 추적을 위한 최근의 연구는 딥러닝(deep learning)을 활용하는 데 초점을 맞추고 있다. 본 논문은 이러한 딥러닝을 활용한 3차원 객체 추적 방법들을 살펴본다. 딥러닝을 활용한 3차원 객체 추적을 위한 주요 방법들을 설명하고, 향후 연구 방향에 대해 논의한다.

교차검증과 SVM을 이용한 도시침수 위험기준 추정 알고리즘 적용성 검토 (Applicability study on urban flooding risk criteria estimation algorithm using cross-validation and SVM)

  • 이한승;조재웅;강호선;황정근
    • 한국수자원학회논문집
    • /
    • 제52권12호
    • /
    • pp.963-973
    • /
    • 2019
  • 본 연구는 도시침수 위험기준이 산정되지 않은 지역의 예·경보 기준을 예측하기 위해 유역특성 자료와 피해이력 기반으로 산정된 한계강우량을 활용하여 도시침수 위험기준을 추정하는 모델을 검토하였다. 위험기준 추정모델은 머신러닝 알고리즘의 하나인 Support Vector Machine을 이용하여 설계하였으며, 학습자료는 지역별 한계강우량과 유역특성으로 구성하였다. 학습자료는 정규화 한 후 SVM 알고리즘에 적용하였으며, SVM에 적용시 Leave-One-Out과 K-fold 교차검증 알고리즘을 이용하여 절대평균오차와 표준편차를 계산한 후 모델의 성능을 평가하였다. Leave-One-Out의 경우 표준편차가 작은 모델이 최적모델로 선정되었으며, K-fold의 경우 fold의 개수가 적은 모델이 선정되었다. 선정된 모델의 지속시간별 평균 정확도는 80% 이상으로 나타나 침수 위험기준 추정을 위해 SVM을 활용가능 할 것으로 판단된다.

The Development of Program for Teaching on Statistical Inference at One Population

  • Choi, Hyun-Seok
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권3호
    • /
    • pp.543-554
    • /
    • 2004
  • In teaching statistics, the part which is very important but difficult to understand to the students is estimation and hypothesis testing. This paper introduces the developed program about estimation and hypothesis testing by using Excel Macro. This program will help learners to study and use a statistical inference conveniently, and to get a good learning effect.

  • PDF

Estimation of BOD in wastewater treatment plant by using different ANN algorithms

  • BAKI, Osman Tugrul;ARAS, Egemen
    • Membrane and Water Treatment
    • /
    • 제9권6호
    • /
    • pp.455-462
    • /
    • 2018
  • The measurement and monitoring of the biochemical oxygen demand (BOD) play an important role in the planning and operation of wastewater treatment plants. The most basic method for determining biochemical oxygen demand is direct measurement. However, this method is both expensive and takes a long time. A five-day period is required to determine the biochemical oxygen demand. This study has been carried out in a wastewater treatment plant in Turkey (Hurma WWTP) in order to estimate the biochemical oxygen demand a shorter time and with a lower cost. Estimation was performed using artificial neural network (ANN) method. There are three different methods in the training of artificial neural networks, respectively, multi-layered (ML-ANN), teaching learning based algorithm (TLBO-ANN) and artificial bee colony algorithm (ABC-ANN). The input flow (Q), wastewater temperature (t), pH, chemical oxygen demand (COD), suspended sediment (SS), total phosphorus (tP), total nitrogen (tN), and electrical conductivity of wastewater (EC) are used as the input parameters to estimate the BOD. The root mean squared error (RMSE) and the mean absolute error (MAE) values were used in evaluating performance criteria for each model. As a result of the general evaluation, the ML-ANN method provided the best estimation results both training and test series with 0.8924 and 0.8442 determination coefficient, respectively.

방대한 기상 레이더 데이터의 원할한 처리를 위한 순환 가중최소자승법 기반 RBF 뉴럴 네트워크 설계 및 응용 (Design of RBF Neural Networks Based on Recursive Weighted Least Square Estimation for Processing Massive Meteorological Radar Data and Its Application)

  • 강전성;오성권
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.99-106
    • /
    • 2015
  • In this study, we propose Radial basis function Neural Network(RBFNN) using Recursive Weighted Least Square Estimation(RWLSE) to effectively deal with big data class meteorological radar data. In the condition part of the RBFNN, Fuzzy C-Means(FCM) clustering is used to obtain fitness values taking into account characteristics of input data, and connection weights are defined as linear polynomial function in the conclusion part. The coefficients of the polynomial function are estimated by using RWLSE in order to cope with big data. As recursive learning technique, RWLSE which is based on WLSE is carried out to efficiently process big data. This study is experimented with both widely used some Machine Learning (ML) dataset and big data obtained from meteorological radar to evaluate the performance of the proposed classifier. The meteorological radar data as big data consists of precipitation echo and non-precipitation echo, and the proposed classifier is used to efficiently classify these echoes.

카메라 기반 객체의 위치인식을 위한 왜곡제거 및 오검출 필터링 기법 (Distortion Removal and False Positive Filtering for Camera-based Object Position Estimation)

  • 진실;송지민;최지호;진용식;정재진;이상준
    • 대한임베디드공학회논문지
    • /
    • 제19권1호
    • /
    • pp.1-8
    • /
    • 2024
  • Robotic arms have been widely utilized in various labor-intensive industries such as manufacturing, agriculture, and food services, contributing to increasing productivity. In the development of industrial robotic arms, camera sensors have many advantages due to their cost-effectiveness and small sizes. However, estimating object positions is a challenging problem, and it critically affects to the robustness of object manipulation functions. This paper proposes a method for estimating the 3D positions of objects, and it is applied to a pick-and-place task. A deep learning model is utilized to detect 2D bounding boxes in the image plane, and the pinhole camera model is employed to compute the object positions. To improve the robustness of measuring the 3D positions of objects, we analyze the effect of lens distortion and introduce a false positive filtering process. Experiments were conducted on a real-world scenario for moving medicine bottles by using a camera-based manipulator. Experimental results demonstrated that the distortion removal and false positive filtering are effective to improve the position estimation precision and the manipulation success rate.

Radar Quantitative Precipitation Estimation using Long Short-Term Memory Networks

  • Thi, Linh Dinh;Yoon, Seong-Sim;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.183-183
    • /
    • 2020
  • Accurate quantitative precipitation estimation plays an important role in hydrological modelling and prediction. Instantaneous quantitative precipitation estimation (QPE) by utilizing the weather radar data is a great applicability for operational hydrology in a catchment. Previously, regression technique performed between reflectivity (Z) and rain intensity (R) is used commonly to obtain radar QPEs. A novel, recent approaching method which might be applied in hydrological area for QPE is Long Short-Term Memory (LSTM) Networks. LSTM networks is a development and evolution of Recurrent Neuron Networks (RNNs) method that overcomes the limited memory capacity of RNNs and allows learning of long-term input-output dependencies. The advantages of LSTM compare to RNN technique is proven by previous works. In this study, LSTM networks is used to estimate the quantitative precipitation from weather radar for an urban catchment in South Korea. Radar information and rain-gauge data are used to evaluate and verify the estimation. The estimation results figure out that LSTM approaching method shows the accuracy and outperformance compared to Z-R relationship method. This study gives us the high potential of LSTM and its applications in urban hydrology.

  • PDF

모바일 영어 학습을 위한 지능형 교육 시스템의 설계 (A Design of Intelligent Tutoring System for Mobile English Loaming)

  • 이영석;김병규;조정원;최병욱
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅲ
    • /
    • pp.1681-1684
    • /
    • 2003
  • We propose the intelligent tutoring system for the mobile english learning. The proposed system is based on the item response theory to analyze the level of learner. We define the types of item, teaching method and item disposition according to contents modeling. The system estimates the learner level and it gives the learning contents, the evaluation results, and feedback. The system gives those by inference engine which consists of learner's level estimation value, method diagnostic value and disposition diagnostic value.

  • PDF

가속신경망에 의한 암반물성의 추정 (Estimation of Engineering Properties of Rock by Accelerated Neural Network)

  • 김남수;양형식
    • 터널과지하공간
    • /
    • 제6권4호
    • /
    • pp.316-325
    • /
    • 1996
  • A new accelerated neural network adopting modified sigmoid function was developed and applied to estimate engineering properties of rock from insufficient geological data. Developed network was tested on the well-known XOR and character recognition problems to verify the validity of the algorithms. Both learning speed and recognition rate were improved. Test learn on the Lee and Sterling's problems showed that learning time was reduced from tens of hours to a few minutes, while the output pattern was almost the same as other studies. Application to the various case studies showed exact coincidence with original data or measured results.

  • PDF

Applications of machine learning methods in KMTNet data quality assurance and detecting microlensing events

  • Shin, Min-Su;Lee, Chung-Uk;Kim, Hyoun-Woo
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.40.3-40.3
    • /
    • 2018
  • We present results from our two experiments of using machine learning algorithms in processing and analyzing the KMTNet imaging data. First, density estimation and clustering methods find meaningful structures in the metric space of imaging quality measurements described by photometric quantities. Second, we also develop a method to separate out light curves of reliable microlensing event candidates from spurious events, estimating reliability scores of the candidates.

  • PDF