• Title/Summary/Keyword: estimating equation

Search Result 748, Processing Time 0.031 seconds

Effects of Moisture Content and Slope of Grain on Ultrasonic Transmission Speed of Wood (함수율과 섬유경사각이 목재의 압축강도 및 초음파 전달속도에 미치는 영향)

  • Jang, Sang-Slk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.10-18
    • /
    • 2000
  • Nondestructive testing(NDT) by using ultrasonic sound is widely applied to wood for grading, moisture and defect detecting, estimating degree of decay, etc. Before practicing such application, basic relationships between ultrasonic transmission and wood properties shall be studied first. In this study, ultrasonic NDT was applied to larch and red pine to investigate the effects of moisture content and slope of grain on ultrasonic transmission speed. Specimens for testing about moisture content were prepared to have moisture content of green state, 30%, 20%, 10% and oven-dry state. Specimens for testing about slope of grain were prepared to have grain angle of 0, 15, 30, 45, 60, 75 and 90 degree in the tangential direction. Ultrasonic transmission speed was inversely proportional to moisture content in low range of moisture content under around 30% that was considered to be close to fiber saturation point. In high moisture content range above 30%, the ultrasonic transmission speed was almost constant. The same trend was observed in the relationships between compressive strength and moisture content. Slope of grain also had inversely proportional relationship with ultrasonic transmission speed and compressive strength. The relationship between compressive strength and ultrasonic transmission speed could be expressed by a linear equation.

  • PDF

Evaluation of L-THIA WWW Dimet Runoff Estimation with AMC Adjustment (선행토양함수조건(AMC)을 고려한 L-THIA WWW 직접유출 모의 정확성 평가)

  • Kim, Jonggun;Park, Younshik;Jeon, Ji-Hong;Engel, Bernard A.;Ahn, Jaehun;Park, Young Kon;Kim, Ki-sung;Choi, Joongdae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.474-481
    • /
    • 2007
  • With population growth, industrialization, and urbanization within the watershed, the hydrologic response changed dramatically, resulting in increases in peak flow with lesser time to peak and total runoff with shortened time of concentration. Infiltration is directly affected by initial soil moisture condition, which is a key element to determine runoff. Influence of the initial soil moisture condition on hydrograph analysis should be evaluated to assess land use change impacts on runoff and non-point source pollution characteristics. The Long-Term Hydrologic Impact Assessment (L-THIA) model has been widely used for the estimation of the direct runoff worldwide. The L-THIA model was applied to the Little Eagle Creek (LEC) watershed and Its estimated direct runoff values were compared with the BFLOW filtered direct runoff values by other researchers. The $R^2$ value Was 0.68 and the Nash-Sutcliffe coefficient value was 0.64. Also, the L-THIA estimates were compared with those separated using optimized $BFI_{max}$ value for the Eckhardt filter. The $R^2$ value and the Nash-Sutcliffe coefficient value were 0.66 and 0.63, respectively. Although these higher statistics could indicate that the L-THIA model is good in estimating the direct runoff reasonably well, the Antecedent Moisture Condition (AMC) was not adjusted in that study, which might be responsible for mismatches in peak flow between the L-THIA estimated and the measured peak values. In this study, the L-THIA model was run with AMC adjustment for direct runoff estimation. The $R^2$ value was 0.80 and the Nash-Sutcliffe coefficient value was 0.78 for the comparison of L-THIA simulated direct runoff with the filtered direct runoff. However there was 42.44% differences in the L-THIA estimated direct runoff and filtered direct runoff. This can be explained in that about 80% of the simulation period is classified as 'AMC I' condition, which caused lower CN values and lower direct runoff estimation. Thus, the coefficients of the equation to adjust CN II to CN I and CN III depending on AMC condition were modified to minimize adjustments impacts on runoff estimation. The $R^2$ and the Nash-Sutcliffe coefficient values increase, 0.80 and 0.80 respectively. The difference in the estimated and filtered direct runoff decreased from 42.44% to 7.99%. The results obtained in this study indicate the AMC needs to be considered for accurate direct runoff estimation using the L-THIA model. Also, more researches are needed for realistic adjustment of the AMC in the L-THIA model.

Development of Production Performance Forecasting Model Considering Pressure Dependent Permeability at Coalbed Methane Reservoir (석탄층 메탄가스전에서 압력 의존 투과도를 고려한 생산거동 예측 모델 개발)

  • Kim, Sangho;Kwon, Sunil
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.3
    • /
    • pp.7-19
    • /
    • 2019
  • In this study, a model was developed for estimating deliverability considering the pressure dependent permeability and predicting production profile with Material Balance Equation(MBE) for Coalbed Methane(CBM) fields. The estimated deliverability was compared with the conventional deliverability based on CBM well testing data with coefficient of determination($R^2$). As a result, the former was 0.76 and the latter was 0.69. It was confirmed that the deliverability which consider the pressure dependent permeability is more adoptable when representing the productivity of CBM fields. Through this process, in order to calculate pressure dependent permeability when well testing data exist, a method to infer reservoir pressure within the radius of investigation was proposed. The production profile of 31 gas wells was predicted for 15 years, using the estimated deliverability and the MBE. After that, the results was compared with simulation results of the literature. The simulation results did not account the pressure dependent permeability and the developed model results considered that. As the applied field permeability rised 1.17 times, field production rate was increased approximately 15% than the literature results. According to other researches, the permeability of CBM fields can be rise 6 ~ 25 times. For these cases, the production profiles may have significant difference with conventional gas fields.

Estimation of Permanent Displacement of Gravity Quay Wall Considering Failure Surface under Seismic Loading (지진 시 파괴면을 고려한 중력식 안벽의 영구변위 평가)

  • Han, Insuk;Ahn, Jae-Kwang;Park, Duhee;Kwon, Osoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.4
    • /
    • pp.15-26
    • /
    • 2019
  • The stability of the gravity quay wall against earthquakes is evaluated on the basis of the allowable displacement of the wall. To estimate the displacement caused by external forces, empirical equations based on the Newmark sliding block method or numerical analysis are widely used. In numerical analysis, it is possible to analyze precisely a complicated site and structure, but difficult to set the appropriate parameters and environments; there are limitations in obtaining reliable results, depending on one's level of expertise. The Newmark method, with only seismic motions, is widely used because it is simpler than numerical simulations when estimating permanent displacement. However, the empirical equations do not have any parameters for the response characteristics and sliding block of the structure, and sliding blocks being assumed as rigid bodies does not consider the nonlinear behavior of the soil and interaction with the structure. Therefore, in order to evaluate the seismic stability of the gravity quay wall, a newly-developed empirical equation is needed to overcome the above-mentioned limitations. In this study, numerical simulations are performed to analyze the response characteristics of the backfill of the structure, and to propose an optimal method of calculating the active area. For this purpose, finite element analyses were performed to analyze the response characteristics, and stress-strain relationships for various seismic motions. As a result, the response characteristics, sliding block, and failure surface of the backfill vary depending on the input seismic motions.

Improvement of Cross-section Estimation Method for Flood Stage Analysis in Unmeasured Streams (미계측 하천의 홍수위 해석을 위한 단면 추정 기법 개선)

  • Jun, Sang Min;Hwang, Soon Ho;Song, Jung-Hun;Kim, Si Nae;Choi, Soon-Kun;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.11-22
    • /
    • 2019
  • The objective of this study was to improve the cross-sectional area and height estimation method using stream width. Stream water levels should be calculated together to simulate inundation of agricultural land. However, cross-sectional survey data of small rural rivers are insufficient. The previous study has developed regression equations between the width and the cross-sectional area and between the width and the height of stream cross-section, but can not be applied to a wide range of stream widths. In this study, cross-sectional survey data of 6 streams (Doowol, Chungmi, Jiseok, Gam, Wonpyeong, and Bokha stream) were collected and divided into upstream, midstream and downstream considering the locations of cross-sections. The regression equations were estimated using the complete data. $R^2$ between the stream width and cross-sectional area was 0.96, and $R^2$ between width and height was 0.81. The regression equations were also estimated using divided data for upstream, midstream and downstream considering the locations of cross-sections. The range of $R^2$ between the stream width and cross-sectional area was 0.86 - 0.91, and the range of $R^2$ between width and height was 0.79 ? 0.92. As a result of estimating the cross-sections of 6 rivers using the regression equations, the regression equations considering the locations of cross-sections showed better performance both in the cross-sectional area and height estimation than the regression equations estimated using the complete data. Hydrologic Engineering Center - River Analysis System (HEC-RAS) was used to simulate the flood stage analysis of the estimated and the measured cross-sections for 50-year, 100-year, and 200-year frequency floods. As a result of flood stage analysis, the regression equations considering the locations of cross-sections also showed better performance than the regression equations estimated using the complete data. Future research would be needed to consider the factors affecting the cross-sectional shape such as river slope and average flow velocity. This study can be useful for inundation simulation of agricultural land adjacent to an unmeasured stream.

Estimation of channel morphology using RGB orthomosaic images from drone - focusing on the Naesung stream - (드론 RGB 정사영상 기반 하도 지형 공간 추정 방법 - 내성천 중심으로 -)

  • Woo-Chul, KANG;Kyng-Su, LEE;Eun-Kyung, JANG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.136-150
    • /
    • 2022
  • In this study, a comparative review was conducted on how to use RGB images to obtain river topographic information, which is one of the most essential data for eco-friendly river management and flood level analysis. In terms of the topographic information of river zone, to obtain the topographic information of flow section is one of the difficult topic, therefore, this study focused on estimating the river topographic information of flow section through RGB images. For this study, the river topography surveying was directly conducted using ADCP and RTK-GPS, and at the same time, and orthomosiac image were created using high-resolution images obtained by drone photography. And then, the existing developed regression equations were applied to the result of channel topography surveying by ADCP and the band values of the RGB images, and the channel bathymetry in the study area was estimated using the regression equation that showed the best predictability. In addition, CCHE2D flow modeling was simulated to perform comparative verification of the topographical informations. The modeling result with the image-based topographical information provided better water depth and current velocity simulation results, when it compared to the directly measured topographical information for which measurement of the sub-section was not performed. It is concluded that river topographic information could be obtained from RGB images, and if additional research was conducted, it could be used as a method of obtaining efficient river topographic information for river management.

Comparison of Two Methodsto Estimate Urban Sensible Heat Flux by Using Satellite Images (위성 영상을 활용한 두 가지 현열 플럭스 추정 방법 간의 비교)

  • Kim, Sang-Hyuck;Lee, Dong-Kun
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.1
    • /
    • pp.63-74
    • /
    • 2022
  • In orderto understand the urban thermal conditions, many studies have been conducted to estimate the thermal fluxes. Currently sensible heat fluxes are estimated through various methods, but studies about comparing the differences between each method are very insufficient. Therefore, this study try to estimate the sensible heat flux of the same area by two representative estimation methods and compare their results to confirm the significance and limitation between methods. As a result of the study, the heat balance methods has a great advantage in terms of resolution but it can not consider the anthropogenic heat flux, so sensible heat flux can be underestimated in urban areas. When estimating based on physical equation, anthropogenic heat flux can be considered and the error is relatively small, it has a limitations in time and space resolutons. The two methods showed the largest difference in industiral areas where anthropogenic heat fluxes are high, with an average of 135 W/m2 and a maximum of 400 W/m2. On the other hand, the green and water have a very small difference with and average of 20 W/m2. The results between two methods show significant differences in urban areas, it is necessary to select a suitable method for each research purpose.

A Study on the Methods to Improve High-Wave Reproducibility during Typhoon (태풍 내습 시의 고파 재현성 개선방안 연구)

  • Jong-Dai, Back;Kyong-Ho, Ryu;Jong-In, Lee;Weon-Mu, Jeong;Yeon-S., Chang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.177-187
    • /
    • 2022
  • This study estimates the design wave in the event of a typhoon attack at Busan new port using the wind field, the revised shallow water design wave estimation method proposed by the Ministry of Oceans and Fisheries in 2020, and proposed a reliable method of calculating the shallow water design through verification with the wave observation data. As a result of estimating typhoon wave using the wind field and SWAN numerical model, which are commonly used in the field work, for typhoon that affected Busan new port, it was found that reproducibility was not good except typhoons KONG-REY(1825) and MAYSAK(2009). In particular, in the case of typhoon MAEMI(0314), which had the greatest impact on Busan new port, the maximum significant wave height was estimated to be about 35.0% smaller than that of the observed wave data. Therefore, a plan to improve the reproducibility of typhoon wave was reviewed by applying the method of correcting the wind field and the method of using the Boussinesq equation numerical model, respectively. As a result of the review, it was found that the reproducibility of the wind field was not good as before when the wind field correction. However as a method of linking wind field data, SWAN model results, and Boussinesq numerical model, typhoon wave was estimated during typhoon MAEMI(0314), and the maximum significant wave was similar to the wave observations, so it was reviewed to have good reproducibility.

Estimation of the Reach-average Velocity of Mountain Streams Using Dye Tracing (염료추적자법을 이용한 산지하천의 구간 평균 유속 추정)

  • Tae-Hyun Kim;Jeman Lee;Chulwon Lee;Sangjun Im
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.374-381
    • /
    • 2023
  • The travel time of flash floods along mountain streams is mainly governed by reach-average velocity, rather than by the point velocity of the locations of interest. Reach-average velocity is influenced by various factors such as stream geometry, streambed materials, and the hydraulic roughness of streams. In this study, the reach-average velocity in mountain streams was measured for storm periods using rhodamine dye tracing. The point cloud data obtained from a LiDAR survey was used to extract the average hydraulic roughness height, such as Ra, Rmax, and Rz. The size distribution of the streambed materials (D50, D84) was also considered in the estimation of the roughness height. The field experiments revealed that the reach-average velocities had a significant relationship with flow discharges (v = 0.5499Q0.6165 ), with an R2 value of 0.77. The root mean square error in the roughness height of the Ra-based estimation (0.45) was lower than those of the other estimations (0.47-1.04). Among the parameters for roughness height estimation, the Ra -based roughness height was the most reliable and suitable for developing the reach-average velocity equation for estimating the travel time of flood waves in mountain streams.

Methods of Estimating Growing Degree Days to Predict Growth Duration in Maize (옥수수의 생육기간 예측을 위한 Growing Degree Days의 계산방법)

  • Jong, Seung-Keun;Lee, Suk-Soon;Park, Keun-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.2
    • /
    • pp.186-194
    • /
    • 1986
  • In an attempt to find better ways to relate growth with temperature and to estimate maturity differences in corn (Zea mays L.), various formulas of computing Growing Degree Days (GDD) were evaluated. Utilizing data from 17 plantings of a single cross, Suweon 19, over a 3 year period, 24 different methods of computing GDD were compared for their ability to reduce variations over different plantings. The best equation was to compute GDD with a base temperature of 10$^{\circ}C$ and an optimum of 30$^{\circ}C$. The excess temperature above 30$^{\circ}C$ was subtracted to account for high temperature stress. GDDs required for emergence and silking of Suweon 19 were 64${\pm}$12$^{\circ}$ and 794${\pm}$19$^{\circ}$, respectively. Based on these GDD values, emergence and silking dates could be estimated with a variation less than 3 days. The observed and estimated number of days from planting to emergence and silking were not significantly different.

  • PDF