• Title/Summary/Keyword: ester synthetase

Search Result 6, Processing Time 0.021 seconds

Enzymatic Synthesis of Ethyl Butyrate Using Ester Synthetase Derived from Banana Peel and Pineapple Peel (바나나 껍질과 파인애플 껍질 Ester Synthetase를 이용한 Ethyl Butyrate의 효소적 합성)

  • Yoon, Ki-Hong;Kim, Kee-huck;Lee, Gyu-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.9
    • /
    • pp.1122-1127
    • /
    • 2017
  • Currently, the consumer trends are increasing towards "natural" in all food systems. Therefore, in the flavor industry, the production of flavor esters by "natural" methods are needed. On the other hand, "natural flavor" is expensive to produce because of the limited natural source. Recently, the flavor obtained from the enzyme or microbial could be represented as "natural flavor". Ethyl butyrate is used most frequently as a fruity aroma in drinks and the processed food industry. In this study, ethyl butyrate was synthesized enzymatically using the ester synthetase obtained from the waste of pineapple and banana peel. The ethyl butyrate production optimization was analyzed using a response surface methodology. The enzyme reaction variances were composed of the ethanol content, butyric acid content, and reaction time. As a result, in ester synthetase obtained from banana peel, the maximum predicted production amounts were 45.8199 mM at an ethanol content of 38.7050 mM, butyric acid content of 50.9019 mM, and reaction time of 4.3662 h. In ester synthetase obtained from pineapple peel, the maximum predicted production was 65.1087 mM at an ethanol content of 54.6502 mM, butyric acid content of 58.7638 mM, and reaction time of 4.7436 h. In conclusion, ethyl butyrate production was shown the more useful using the ester synthetase obtained from pineapple peel than that from banana peel.

Acetoacetyl-CoA Synthetase, a Novel Cytosolic Ketone Body-Utilizing Enzyme that Specifically Activates Acetoacetate to its Coenzyme A Ester

  • Fukui, Tetsuya
    • Proceedings of the PSK Conference
    • /
    • 2003.10a
    • /
    • pp.70-70
    • /
    • 2003
  • In mammalians, ketone bodies (acetoacetate, D(-)-3-hydroxybutyrate and acetone) are generated mainly in the liver via the 3-hydroxy-3-methylglutaryl-CoA pathway, carried to and utilized in extrahepatic tissues as an energy source during starvation and diabetes in particular due to their overproduction as the consequence of elevated fatty acid oxidation and lowered glucose metabolism. (omitted)

  • PDF

Tu-Chung Leaf Meal Supplementation Reduced an Increase in Lipid Accumulation of Chickens Stimulated by Dietary Cholesterol

  • Santoso, U.;Ohtani, S.;Tanaka, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.12
    • /
    • pp.1758-1763
    • /
    • 2000
  • The effect of tu-chung (Eucommia ulmoides, Oliver) leaf meal on reducing lipid accumulation in chickens fed 1% cholesterol containing diet was studied. Forty male White Leghorn chickens aged 56 days were weighed and divided into four groups of ten chickens, and fed diets with or without 1% dietary cholesterol which were supplemented with 0 and 5% tu-chung. Tu-chung supplementation to the diet without cholesterol increased acetyl-CoA carboxylase (p<0.01) but decreased 3-hydroxy-3-methylglutaryl-CoA reductase activities (p<0.01) with no effect on fatty acid synthetase activities. However, its supplementation to the diet with cholesterol had no effect on these three enzyme activities as compared with the cholesterol containing diet without tu-chung. Tu-chung supplementation to the diet without cholesterol increased hepatic triglyceride (p<0.01), whereas its supplementation to the diet with cholesterol decreased it (p<0.01). Tu-chung supplementation to the diet with cholesterol decreased plasma cholesterol ester, free cholesterol, phospholipids (p<0.05) and triglyceride (p<0.01) as compared with the cholesterol containing diet without tu-chung. Supplementation of tu-chung to the diet without cholesterol decreased plasma free cholesterol (p<0.05). It is concluded that tu-chung leaf meal reduced an increase in lipid accumulation in chickens stimulated by 1% cholesterol feeding.

The Effects of Supplementing Methionine plus Cystine to a Low-protein Diet on the Growth Performance and Fat Accumulation of Growing Broiler Chicks

  • Bunchasak, C.;Satoso, U.;Tanaka, K.;Ohtani, S.;Collado, Cristino M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.2
    • /
    • pp.185-191
    • /
    • 1997
  • This experiment was conducted to determine the effects of a low-protein diet supplemented with DL-methionine plus L-cystine (Met + Cys) on the growth performance and fat accumulation of female broiler chicks during the growing period (3-6 wks old). A low-protein diet (17% CP; 3,200 ME kcal/kg) was supplemented with Met + Cys (1.1 : 1.0) at levels 0.75, 0.94, 1.25, 1.31 or 1.50% of diet, respectively. Another diet with 21% CP and 3,200 ME kcal/kg served as the control group. All essential amino acids were adjusted to meet the National Research Council (1984) requirement for chicks. Feed and water were given ad libitum. Body weight of the chicks fed the low-CP diets supplemented with Met + Cys were heavier than those of the control birds. Feed conversion ratio and feed intakes were not significantly different between and among the treatment groups. Similary, abdominal fat content was not significantly different among the various treatments except that of the chicks fed the low CP diet with 1.25% Met + Cys which was higher than that of the control group. Fatty acid synthetase (FAS), acetyl-CoA carboxylase (ACC) activities and carcass protein content were not influenced by dietary treatments. Carcass fat content was lowest in chicks fed low CP diet with 0.75% Met + Cys and highest in the group that received 1.50% Met + Cys supplementation. Liver triglyceride increased as Met + Cys supplementation level increased. Various lipid fraction concentrations (cholesterol ester, free cholesterol, and phospholipid) in the serum went up as Met + Cys increased up to 1.25% after which it levelled off. Results of this experiment suggest that it is possible to reduce dietary protein level from 21% to 17% for growing broiler chicks by the supplementation of Met + Cys when other EAA were sufficient.

Effect of Ginseng Saponin on LDL Receptor Biosynthesis (인삼사포닌의 저밀도지질단백질(LDL)수용체에 미치는 영향)

  • Joo Chung No;Lee Hee Bong;Lee Yong Woo;Kang In Chul
    • Proceedings of the Ginseng society Conference
    • /
    • 1988.08a
    • /
    • pp.47-54
    • /
    • 1988
  • Cholesterol a component of all eucaryotic plasma membranes. is essential for the growth and viability of cells in higher organisms. However. too much cholesterol can be lethal because of atherosclerosis resulting from the deposition of cholesterol ester plaques. It was attempted in this study to understand the preventive effect of ginseng saponin. one of the major components of the roots of Panax ginseng C.A. Meyer. against hypercholesterolemia induced by high cholesterol diet. $^{125}I-LDL$ was injected intravenously to rabbits and rats. which were fed a high cholesterol diet with and/or without ginseng saponin for 12 days. The disappearance of the radioactivity occurred faster in the test group than the control. The effect of saponin fraction from Panax ginseng C.A. Meyer and the purified ginsenosilks. $Rb_1,\;Rb_2,\;Re\;and\;Rg_1,$ on LDL receptor biosynthesis in high cholesterol fed rat has been investigated. Analysis of LDL receptors from various organs such as liver. kidney. adrenal cortex and testis showed that the population of LDL receptors of test group significantly higher than that of the control. It was also found that liver homogenate containing ginsenosides $(10^{-3}-10^{-4}\%)$ stimulated the biosynthesis of bile acid form cholesterol. From the above results. it seemed that ginsenosides lower the cholesterol level by stimulating cholesterol metabolism. which result in the suppression of the inhibitory action of cholesterol on LDL receptor biosynthesis.

  • PDF

Rosmarinic Acid Inhibits Ultraviolet B-Mediated Oxidative Damage via the AKT/ERK-NRF2-GSH Pathway In Vitro and In Vivo

  • Mei Jing Piao;Pattage Madushan Dilhara Jayatissa Fernando;Kyoung Ah Kang;Pincha Devage Sameera Madushan Fernando;Herath Mudiyanselage Udari Lakmini Herath;Young Ree Kim;Jin Won Hyun
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.84-93
    • /
    • 2024
  • Rosmarinic acid (RA) is a phenolic ester that protects human keratinocytes against oxidative damage induced by ultraviolet B (UVB) exposure, however, the mechanisms underlying its effects remain unclear. This study aimed to elucidate the cell signaling mechanisms that regulate the antioxidant activity of RA and confirm its cyto-protective role. To explore the signaling mechanisms, we used the human keratinocyte cell line HaCaT and SKH1 hairless mouse skin. RA enhanced glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS) expression in HaCaT cells in a dose- and time-dependent manner. Moreover, RA induced nuclear factor erythroid-2-related factor 2 (NRF2) nuclear translocation and activated the signaling kinases protein kinase B (AKT) and extracellular signal-regulated kinase (ERK). Treatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, the ERK inhibitor U0126, and small interfering RNA (siRNA) gene silencing suppressed RA-enhanced GCLC, GSS, and NRF2 expression, respectively. Cell viability tests showed that RA significantly prevented UVB-induced cell viability decrease, whereas the glutathione (GSH) inhibitors buthionine sulfoximine, LY294002, and U0126 significantly reduced this effect. Moreover, RA protected against DNA damage and protein carbonylation, lipid peroxidation, and apoptosis caused by UVB-induced oxidative stress in a concentration-dependent manner in SKH1 hairless mouse skin tissues. These results suggest that RA protects against UVB-induced oxidative damage by activating AKT and ERK signaling to regulate NRF2 signaling and enhance GSH biosynthesis. Thus, RA treatment may be a promising approach to protect the skin from UVB-induced oxidative damage.