• Title/Summary/Keyword: essential work of fracture

Search Result 16, Processing Time 0.028 seconds

Study on seismic strengthening of railway bridge pier with CFRP and concrete jackets

  • Ding, Mingbo;Chen, Xingchong;Zhang, Xiyin;Liu, Zhengnan;Lu, Jinghua
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.275-283
    • /
    • 2018
  • Seismic strengthening is essential for existing bridge piers which are deficient to resist the earthquake. The concrete and CFRP jackets with a bottom-anchoring method are used to strengthen railway bridge piers with low reinforcement ratio. Quasi-static tests of scaled down model piers are performed to evaluate the seismic performance of the original and strengthened bridge pier. The fracture characteristics indicate that the vulnerable position of the railway bridge pier with low reinforcement ratio during earthquake is the pier-footing region and shows flexural failure mode. The force-displacement relationships show that the two strengthening techniques using CFRP and concrete jackets can both provide a significant improvement in load-carrying capacity for railway bridge piers with low reinforcement ratio. It is clear that the bottom-anchoring method by using planted steel bars can guarantee the CFRP and concrete jackets to work jointly with original concrete piers Furthermore, it can be found that the use of CFRP jacket offers advantages over concrete jacket in improving the energy dissipation capacity under lateral cyclic loading. Therefore, the seismic strengthening techniques by the use of CFRP and concrete jackets provide alternative choices for the large numbers of existing railway bridge piers with low reinforcement ratio in China.

Engineering J-Integral Estimation for Semi-Elliptical Surface Cracked Plates in Tension (인장하중이 작용하는 평판에 존재하는 반타원 표면균열의 J-적분 계산식)

  • Sim, Do-Jun;Kim, Yun-Jae;Choe, Jae-Bung;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1777-1784
    • /
    • 2001
  • This paper provides d simplified engineering J estimation method fur semi-e1liptical surface cracked plates in tension, based on the reference stress approach. Note that the essential element of the reference stress approach is the plastic limit lead in the definition of the reference stress. However, for surface cracks, the definition of the limit load is ambiguous ("local" or "global"limit lead), and thus the most relevant limit load (and thus reference stress) for the J estimation should be determined. In the present work, such limit load solution is found by comparing reference stress bated J results with those from extensive 3-D finite element analyses. Validation of the proposed equation against FF J results based on tactual experimental tensile data of a 304 stainless steel shows excellent agreements not only far the J values at the deepest point but also for those at an arbitrary paint along the crack front, including at the surface point. Thus the present results provide a good engineering tool for elastic-plastic fracture analyses of surface cracked plates in tension.

Numerical Analysis of Iceberg Impact Interaction with Ship Stiffened Plates Considering Low-temperature Characteristics of Steel (강재의 저온 특성을 고려한 선체 보강판과 빙하의 충격 상호 작용에 대한 수치 해석)

  • Nam, Woongshik
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.411-420
    • /
    • 2019
  • It is essential to design crashworthy marine structures for operations in Arctic regions, especially ice-covered waters, where the structures must have sufficient capacity to resist iceberg impact. In this study, a numerical analysis of a colliding accident between an iceberg and stiffened plates was carried out employing the commercial finite element code ABAQUS/Explicit. The ice material model developed by Liu et al. (2011) was implemented in the simulations, and its availability was verified by performing some numerical simulations. The influence of the ambient temperature on the structural resistance was evaluated while the local stress, plastic strain, and strain energy density in the structure members were addressed. The present study revealed the risk of fracture in terms of steel embrittlement induced by ambient temperature. As a result, the need to consider the possibility of brittle failure in a plate-stiffener junction during operations in Arctic regions is acknowledged. Further experimental work to understand the structural behavior in a plate-stiffener junction and HAZ is required.

Development of Mesh Generation Program for the Primary System of Nuclear Power Plant (원자력 주요기기 해석을 위한 자동요소망 생성프로그램 개발)

  • Jang, Dong-Min;Kim, Yeong-Jin;Choe, Seong-Nam;Seo, Myeong-Won;Jang, Gi-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.386-393
    • /
    • 2000
  • Fracture mechanics analysis (FMA) is an essential work for integrity evaluation of nuclear power plant. The flaws inspected by In-Service Inspection(ISI) should be confirmed by FMA for the decision of the operation status of stop or continuance. The basic data for FMA are the stress of the interested area. The purpose of this research is to develop a system which can obtain stress data efficiently based on various database. Mesh generation program generates mesh using MSC/PATRAN and provides input file for finite element analysis according to the databases (shape, dimension, transient and material). The stress data from the finite element analysis are stored to be stress database so that it can be applied to FMA. As an example, the system developed by this study is applied to pressurizer nozzle and confirmed to be a useful tool for efficient FMA.

Robust surface segmentation and edge feature lines extraction from fractured fragments of relics

  • Xu, Jiangyong;Zhou, Mingquan;Wu, Zhongke;Shui, Wuyang;Ali, Sajid
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.79-87
    • /
    • 2015
  • Surface segmentation and edge feature lines extraction from fractured fragments of relics are essential steps for computer assisted restoration of fragmented relics. As these fragments were heavily eroded, it is a challenging work to segment surface and extract edge feature lines. This paper presents a novel method to segment surface and extract edge feature lines from triangular meshes of irregular fractured fragments. Firstly, a rough surface segmentation is accomplished by using a clustering algorithm based on the vertex normal vector. Secondly, in order to differentiate between original and fracture faces, a novel integral invariant is introduced to compute the surface roughness. Thirdly, an accurate surface segmentation is implemented by merging faces based on face normal vector and roughness. Finally, edge feature lines are extracted based on the surface segmentation. Some experiments are made and analyzed, and the results show that our method can achieve surface segmentation and edge extraction effectively.

Classification of Ground Subsidence Factors for Prediction of Ground Subsidence Risk (GSR) (굴착공사 중 지반함몰 위험예측을 위한 지반함몰인자 분류)

  • Park, Jin Young;Jang, Eugene;Kim, Hak Joon;Ihm, Myeong Hyeok
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.153-164
    • /
    • 2017
  • The geological factors for causing ground subsidence are very diverse. It can be affected by any geological or extrinsic influences, and even within the same geological factor, the soil depression impact factor can be determined by different physical properties. As a result of reviewing a large number of papers and case histories, it can be seen that there are seven categories of ground subsidence factors. The depth and thickness of the overburden can affect the subsidence depending on the existence of the cavity, whereas the depth and orientation of the boundary between soil and rock are dominant factors in the ground composed of soil and rock. In case of soil layers, more various influencing factors exist such as type of soil, shear strength, relative density and degree of compaction, dry unit weight, water content, and liquid limit. The type of rock, distance from the main fracture and RQD can be influential factors in the bedrock. When approaching from the hydrogeological point of view, the rainfall intensity, the distance and the depth from the main channel, the coefficient of permeability and fluctuation of ground water level can influence to ground subsidence. It is also possible that the ground subsidence can be affected by external factors such as the depth of excavation and distance from the earth retaining wall, groundwater treatment methods at excavation work, and existence of artificial facilities such as sewer pipes. It is estimated that to evaluate the ground subsidence factor during the construction of underground structures in urban areas will be essential. It is expected that ground subsidence factors examined in this study will contribute for the reliable evaluation of the ground subsidence risk.