• Title/Summary/Keyword: essential maintenance

Search Result 685, Processing Time 0.027 seconds

A Study on Development of Portable Concrete Crack Measurement Device Using Image Processing Technique and Laser Sensors (이미지 처리기법 및 레이저 센서를 이용한 휴대용 콘크리트 균열 측정 장치 개발에 관한 연구)

  • Seo, Seunghwan;Ohn, Syng-Yup;Kim, Dong-Hyun;Kwak, Kiseok;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.41-50
    • /
    • 2020
  • Since cracks in concrete structures expedite corrosion of reinforced concrete over a long period of time, regular on-site inspections are essential to ensure structural usability and prevent degradation. Most of the safety inspections of facilities rely on visual inspection with naked eye, so cost and time consuming are severe, and the reliability of results differs depending on the inspector. In this study, a portable measuring device that can be used for safety diagnosis and maintenance was developed as a device that measures the width and length of concrete cracks through image analysis of cracks photographed with a camera. This device captures the cracks found within a close distance (3 m), and accurately calculates the unit pixel size by laser distance measurement, and automatically calculates the crack length and width with the image processing algorithm developed in this study. In measurement results using the crack image applied to the experiment, the measurement of the length of a 0.3 mm crack within a distance of 3 m was possible with a range of about 10% error. The crack width showed a tendency to be overestimated by detecting surrounding pixels due to vibration and blurring effect during the binarization process, but it could be effectively corrected by applying the crack width reduction function.

A Study of the Overseas-Constructed Korean Garden using Native Plants from the Korean Peninsula - The Case Study of 'Das Dritte Land (The Third Nature)' - (한반도 자생식물로 조성한 해외 한국정원 연구 - Das Dritte Land(제3의 자연)를 사례로 -)

  • Seo, Jayoo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.4
    • /
    • pp.1-14
    • /
    • 2021
  • This study examined the techniques of creating gardens overseas using native plants from the Korean peninsula, focusing on the case of 'Das Dritte Land', an art garden created in Berlin, Germany. While Korean garden artists are recognized worldwide and are planning to globalize Korean gardens, the purpose of this study is to share information so that Korean gardeners can expand their activities and rediscover the utilization and value of plants native to the Korean peninsula. The work began as part of a project to mark the 30th anniversary of the collapse of the Berlin Wall. To realize the landscape of Korea with the motif of Inwang Jesaekdo, the geographical shape of the Baekdu-Daegan trail was reproduced with black stone, and the naturalization of Korean peninsula species was utilized in the creation of a garden Berlin. It is a surreal bio-top utopia that blooms with the bio-groups of the Korean peninsula. This study examined the process of plant survey analysis, transportation and stabilization, planting planning, composition and monitoring, and targeting the self-growth of the Korean peninsula, which is a symbol of harmony between the South and the North. The planting of Korea's native plants in overseas gardens symbolizes the uniting of the ecosystems on the Korean peninsula. The process of the Korean peninsula's young plants taking root, flowering, and spreading along Germany's previously divided border metaphorically conveys the desire for the unification of the Korean peninsula. In addition, various art programs in the garden space suggest a foundation for cultural dialogue and communication between the two Koreas. Moreover, creating gardens overseas implies that the cooperation of plant research institutes plays an important role in the transfer of plants and the maintenance of life, while the advancement of Korean gardens overseas plays an essential role in the spread of garden culture in our country.

Development of analytical method for the isotope purity of pure D2 gas using high-precision magnetic sector mass spectrometer

  • Chang, Jinwoo;Lee, Jin Bok;Kim, Jin Seog;Lee, Jin-Hong;Hong, Kiryong
    • Analytical Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.205-211
    • /
    • 2022
  • Deuterium (D) is an isotope with one more neutron number than hydrogen (H). Heavy elements rarely change their chemical properties with little effect even if the number of neutrons increases, but low-mass elements change their vibration energy, diffusion rate, and reaction rate because the effect cannot be ignored, which is called an isotope effect. Recently, in the semiconductor and display industries, there is a trend to replace hydrogen gas (H2) with deuterium gas (D2) in order to improve process stability and product quality by using the isotope effect. In addition, as the demand for D2 in industries increases, domestic gas producers are making efforts to produce and supply D2 on their own. In the case of high purity D2, most of them are produced by electrolysis of heavy water (D2O), and among D2, hydrogen deuteride (HD) molecules are present as isotope impurities. Therefore, in order to maximize the isotope effect of hydrogen in the electronic industry, HD, which is an isotope impurity of D2 used in the process, should be small amount. To this end, purity analysis of D2 for industrial processing is essential. In this study, HD quantitative analysis of D2 for high purity D2 purity analysis was established and hydrogen isotope RM (Reference material) was developed. Since hydrogen isotopes are difficult to analyze with general gas analysis instrument, they were analyzed using a high-precision mass spectrometer (Gas/MS, Finnigan MAT271). High purity HD gas was injected into Gas/MS, sensitivity was determined by a signal according to pressure, and HD concentrations in two bottles of D2 were quantified using the corresponding sensitivity. The amount fraction of HD in each D2 was (4518 ± 275) μmol/mol, (2282 ± 144) μmol/mol. D2, which quantifies HD amount using the developed quantitative analysis method, will be manufactured with hydrogen isotope RM and distributed for quality management and maintenance of electronic industries and gas producers in the future.

Improvement of Water Quality by Corona Discharge Plasma-activated Water in a Tilapia Recirculating Aquaculture System (코로나 방전-플라즈마 처리수의 틸라피아 순환여과양식시스템 수질 개선 효과)

  • You, Jin Ho;Mun, Seong Hee;Oh, Hyeon Ji;Park, Tae Sup;Kwon, Joon Yeong
    • Journal of Marine Life Science
    • /
    • v.5 no.2
    • /
    • pp.51-57
    • /
    • 2020
  • Disinfection and maintenance of rearing water in aquaculture is an essential element for the prevention of fish diseases. This is especially important in recirculating aquaculture systems (RAS) in which fish are reared at high density using recycled water. In this study, tilapia was reared in two different RAS (one with plasma generator - PW system, another without plasma generator - No PW system). In plasma treated group, UVT% of water was improved clearly, and the number of heterotrophic bacteria decreased significantly after 40 days. Total weight gain of tilapia in PW system was significantly higher, and other growth indicators were also relatively higher although not statistically significant. In addition, the fish in PW system had a 100% survival rate, and there were no histological differences between fish from both systems. Fish did not seem to be affected by the toxicity of ROS. In conclusion, it is expected that plasma water can effectively deactivate fish pathogens and improve the quality of rearing water.

Effects of different inorganic: organic zinc ratios or combination of low crude protein diet and mixed feed additive in weaned piglet diets

  • Oh, Han Jin;Kim, Myung Hoo;Lee, Ji Hwan;Kim, Yong Ju;An, Jae Woo;Chang, Se Yeon;Go, Young Bin;Song, Dong Cheol;Cho, Hyun Ah;Jo, Min Seok;Kim, Dae Young;Kim, Min Ji;Cho, Sung Bo;Kim, Hyeun Bum;Cho, Jin Ho
    • Journal of Animal Science and Technology
    • /
    • v.64 no.1
    • /
    • pp.23-37
    • /
    • 2022
  • Thirty-six weaned piglets with an initial body weight (BW) of 8.43 ± 0.40 kg (28 days of age, ([Landrace × Yorkshire] × Duroc) were randomly assigned to 6 treatments for a 2-week feeding trial to determine the effects of different inorganic zinc (IZ), organic zinc (OZ) or combination of low crude protein diet (LP) and Mixed feed additive (MFA) on diarrhea score, nutrient digestibility, zinc utilization, blood profiles, organ weight, and fecal microflora in weaned piglet diet. The pigs were individually placed in 45 × 55 × 45 cm stainless steel metabolism cages in an environmentally controlled room (30 ± 1℃). The dietary treatments included a negative control (NC), positive control (PC; zinc oxide, 1,000 mg/kg), T1 (IZ : OZ, 850 : 150), T2 (IZ : OZ 700 : 300), T3 (IZ : OZ, 500 : 500), and T4 (LP + MFA [0.1% Essential oils + 0.08% Protease + 0.02% Xylanase]). The daily feed allowance was adjusted to 2.7 times the maintenance requirement for digestible energy (2.7 × 110 kcal of DE/kg BW0.75). This allowance was divided into two equal parts, and the piglets were fed at 08 : 30 and 17 : 30 each day. Water was provided ad libitum through a drinking nipple. The diarrhea score was significantly increased (p < 0.05) in NC treatment compared with other treatments. The apparent total tract digestibility (ATTD) of dry matter (DM), nitrogen (N), and gross energy (GE) was significantly increased (p < 0.05) in the T2 treatment compared with the PC and NC treatments in week 1. In week 2, the ATTD of DM, N, and GE was significantly decreased (p < 0.05) in the NC treatment compared with other treatments. The T3 treatment had significantly higher (p < 0.05) ATTD and apparent ileal digestibility of zinc than the PC and T1 treatments. The Escherichia coli count in feces was significantly decreased in the T4 treatment compared with the NC and T2 treatments. The Lactobacillus count in feces was significantly increased in the T4 and T1 treatment compared with the T2 and T3 treatments. In conclusion, IZ : OZ 500 : 500 levels could improve nutrient digestibility and zinc utilization in weaned piglets, Moreover, MFA in LP diets could be used as a zinc alternative.

Enhancement of durability of tall buildings by using deep-learning-based predictions of wind-induced pressure

  • K.R. Sri Preethaa;N. Yuvaraj;Gitanjali Wadhwa;Sujeen Song;Se-Woon Choi;Bubryur Kim
    • Wind and Structures
    • /
    • v.36 no.4
    • /
    • pp.237-247
    • /
    • 2023
  • The emergence of high-rise buildings has necessitated frequent structural health monitoring and maintenance for safety reasons. Wind causes damage and structural changes on tall structures; thus, safe structures should be designed. The pressure developed on tall buildings has been utilized in previous research studies to assess the impacts of wind on structures. The wind tunnel test is a primary research method commonly used to quantify the aerodynamic characteristics of high-rise buildings. Wind pressure is measured by placing pressure sensor taps at different locations on tall buildings, and the collected data are used for analysis. However, sensors may malfunction and produce erroneous data; these data losses make it difficult to analyze aerodynamic properties. Therefore, it is essential to generate missing data relative to the original data obtained from neighboring pressure sensor taps at various intervals. This study proposes a deep learning-based, deep convolutional generative adversarial network (DCGAN) to restore missing data associated with faulty pressure sensors installed on high-rise buildings. The performance of the proposed DCGAN is validated by using a standard imputation model known as the generative adversarial imputation network (GAIN). The average mean-square error (AMSE) and average R-squared (ARSE) are used as performance metrics. The calculated ARSE values by DCGAN on the building model's front, backside, left, and right sides are 0.970, 0.972, 0.984 and 0.978, respectively. The AMSE produced by DCGAN on four sides of the building model is 0.008, 0.010, 0.015 and 0.014. The average standard deviation of the actual measures of the pressure sensors on four sides of the model were 0.1738, 0.1758, 0.2234 and 0.2278. The average standard deviation of the pressure values generated by the proposed DCGAN imputation model was closer to that of the measured actual with values of 0.1736,0.1746,0.2191, and 0.2239 on four sides, respectively. In comparison, the standard deviation of the values predicted by GAIN are 0.1726,0.1735,0.2161, and 0.2209, which is far from actual values. The results demonstrate that DCGAN model fits better for data imputation than the GAIN model with improved accuracy and fewer error rates. Additionally, the DCGAN is utilized to estimate the wind pressure in regions of buildings where no pressure sensor taps are available; the model yielded greater prediction accuracy than GAIN.

Structural Behavior of Rib Reinforced Mg-Si Aluminum Alloy lighting Pole (리브보강 Al-Mg-Si계 가로등 등주의 구조적 거동)

  • Nam, Jeong-Hun;Joo, Hyung-Joong;Kim, Young-Ho;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.21 no.6
    • /
    • pp.8-14
    • /
    • 2008
  • Lighting system of road is an essential structure used for the safety of pedestrians and vehicles. Most of the lighting pole is made with steel which is vulnerable under corrosive environment. To overcome such corrosion problems, stainless steel and iron steel are used, but they are usually manufactured by hand which is not efficient. Due to their high strength and stiffness, when there is car collision with the lighting pole structure the safety of driver may not be ensured. Hence, the development of new-type lighting pole system which is easy to adjust the right on the road, lengthen the service life, and reduce the maintenance, is necessary. Lighting pole made with aluminum alloy is high in strength per unit weight, is strong against corrosive environment, and is easy to construct due to flexibility and right weight. But, because the strength and stiffness of the material is lower than that of steel, the structural safety and serviceability of the system can be a problem. To mitigate the structural problem associated with conventional lighting pole system, experimental investigation is conducted on the conventional lighting pole and rib reinforced aluminum alloy lighting pole, respectively. By comparison of results, it was found that the rib reinforced Mg-Si aluminum alloy lighting pole is efficiently applicable to the lighting pole system of road.

Stable Channel Analysis and Design for the Abandoned Channel Restoration Site of Cheongmi Stream using Regime Theory (평형하상 이론을 이용한 청미천 구하도 복원 대상구간의 안정하도 평가 및 설계)

  • Ji, Un;Julien, Pierre Y.;Kang, Joon Gu;Yeo, Hong Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.305-313
    • /
    • 2010
  • River restoration or rehabilitation should be conducted in a way to maximize the channel stability with natural river configuration close to the equilibrium condition considering divers aspects of fluvial hydraulics, erosion and sedimentation, fluvial geomorphology, and ecological environment and to minimize the maintenance work. Therefore, the channel stability evaluation for present condition based on the equilibrium channel concept should be preceded for the river restoration project. Methods for equilibrium channel theory have generally been developed following either analytical regime theory or empirical regime theory. The main purpose of this paper is to evaluate the stability of present channel condition for the section of abandoned channel restoration in Cheongmi Stream using the Stable channel Analytical Model (SAM) and equilibrium hydraulic geometry equations. The results of analytical and empirical regime theories should provide fundamental and essential information to design the stable channel geometry. As a calculation result of Copeland's method for the study reach, the equilibrium channel has a narrower channel width, deeper water depth, and more gentle slope than the present channel geometry. As results of equilibrium hydraulic geometry equations, predicted equilibrium widths are less than the channel width in the field. It is represented that the current bed slope must be gentle to reach the equilibrium condition according to the results of Julien and Wargadalam method.

Development of a Rotation Swab Pig Method for Cleaning Water Pipes (상수관의 세척을 위한 회전식 스왑피그 공법 개발)

  • Kicheol Lee;Jaeho Kim;Kisung Kim;Jeongjun Park
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.63-75
    • /
    • 2024
  • Drinking water is an essential element to ensure the basic human right to live, and the quality of clean water must always be ensured. However, domestic water facilities, which were installed intensively in the early 2000s, are deteriorating. The accidents such as discoloration of water such as chromaticity and turbidity as well as leakage of substances frequently occur. However, since it is virtually impossible to replace all water pipes, the detailed standards for maintenance of water pipe network facilities established in 2021 require water pipe cleaning. The swab pig method, one of the water pipe cleaning methods, is a method of physically removing substances in pipes and is evaluated as having the highest cleaning efficiency. However, Swab is highly likely to be damaged or deformed during the cleaning process, and may even be lost. Therefore, in this study, the material of the pig was changed to a material with high compressibility, and it was made as close as possible to the inner wall of the water pipe. And, to maximize cleaning efficiency, a rotation swab pig with a rotation blade was developed. In addition, high-strength wire and winding equipment were additionally developed to eliminate the possibility of loss and to determine the location of the pig. The inlet and outlet are connected with wires, and after verifying the performance of each detailed technology, the technology was applied on a test bed with a 30m section. As a result of the application, the performance of the technology was verified by measuring the process time and evaluating applicability.

Analysis of Applicability of Rapid Hardening Composite Mat to Railway Sites (초속경 복합매트의 철도현장 적용성 분석)

  • Jang, Seong Min;Yoo, Hyun Sang;Oh, Dong Wook;Batchimeg, Banzragchgarav;Jung, Hyuk Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.109-116
    • /
    • 2024
  • The Rapid Hardening Composite Mat (RHCM) is a product that improves the initial strength development speed of conventional Geosynthetic Cementitious Composite Mats (GCCM). It offers the advantage of quickly securing sufficient strength in railway slopes with insufficient formation level, and provides benefits such as preventing slope erosion and inhibiting vegetation growth. In this study, an analysis of the practical applicability of RHCM in railway settings was conducted through experimentation. The on-site applicability was assessed by categorizing it into fire resistance, durability, and stability, and conducting combustibility test, ground contact pressure test, and daily displacement analyses. In the case of South Korea, where a significant portion of the territory is composed of forested areas, the prevention of slope fires is imperative. To analyze the fire resistance of RHCM, combustibility tests were conducted as an essential measure. Durability was assessed through ground contact pressure tests to analyze the deformation and potential damage of RHCM caused by the inevitable use of small to medium-sized equipment on the construction surface. Furthermore, daily displacement analysis was conducted to evaluate the structural stability by comparing and analyzing the displacement and behavior occurring during the application of RHCM with railway slope maintenance criteria. As a result of the experiments, the RHCM was analyzed to meet the criteria for heat release rate and gas toxicity. Furthermore, the ground contact pressure was observed to be consistently above 50 kPa during the curing period of 4 to 24 hours under all conditions. Additionally, the daily displacement analyzed through field site experiments ranged from -1.7 mm to 1.01 mm, confirming compliance with the criteria.