• Title/Summary/Keyword: essential gene

Search Result 833, Processing Time 0.027 seconds

Regulation of Gene Expression in Higher Plant (고등식물의 유전자 발현의 조절)

  • 심웅섭
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.241-260
    • /
    • 1987
  • The regulatory mechanisms of gene expression in higher plant were not ascertained in detail because the genome size is very large and complex. However, the above-mentioned study is remarkably progressed in parallel with development of DNA recombinant technology and plant vector system. Some research results connected with the mechanisms could be summarized as follows. 1. Many plant genes including chloroplast genes are cloned. 2. The structures of some regulatory regions of gene expression are determined, and it is confirmed that new regulatory units are made by transposable elements. 3. Plant gene expression is regulated not only at transcriptional level but also at translational level. 4. The factors that regulate plant gene expression could be divided as two categorys. One is endogenous elements including the structural change of chromatin during development stage and tissue differentiation. The other is environmental stimulations such as air, water, heat, salts and light. However, some sufficient research-aid fund is essential in order to study the regulatory mechanisms of gene expression more systematically.

  • PDF

Site-speci fic Inactivation o meso-Diaminopimelate-dehydrogenase Gene (ddh) in a Lysine-producing Brevibacterium lactofementum. (Brevibacterium lactofermentum 에서 meso-Diaminopimelate-dehydrogenase Gene (ddh)의 Site-specific Inactivation)

  • 김옥미;박선희;이갑랑
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.5
    • /
    • pp.387-392
    • /
    • 1998
  • Brevibacterium lactofermentum, a gram-positive bacteria, has both the diaminopimelate (DAP) pathway and meso-DAP-dehydrogenase (DDH) pathway for L-lysine biosynthesis. To investigate importance of DDH pathway and the related ddh gene in lysine production, we introduced site-specific mutagenesis technique. A 300 bp DNA fragment central to the meso-DAP-dehydrogenase gene (ddh) of B. lactofermentum was used to inactive chromosomal ddh gene via homologous recombination. Southern hybridization analysis confirmed that the chromosomal ddh gene was disrupted by the vector sequence. The B. lactofementum ddh mutant obtained have an inactive DDH pathway. The results reveal that inactivation of the ddh gene in B. lactofermentum leads to dramatic reduction of lysine production as well as decrease of the growth rate, indicating that the DDH pathway is essential for high-level lysine production as well as biosynthesis of meso-DAP.

  • PDF

Regulation of vascular smooth muscle phenotype by cross-regulation of krüppel-like factors

  • Ha, Jung Min;Yun, Sung Ji;Jin, Seo Yeon;Lee, Hye Sun;Kim, Sun Ja;Shin, Hwa Kyoung;Bae, Sun Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Regulation of vascular smooth muscle cell (VSMC) phenotype plays an essential role in many cardiovascular diseases. In the present study, we provide evidence that $kr{\ddot{u}}ppel$-like factor 8 (KLF8) is essential for tumor necrosis factor ${\alpha}$ ($TNF{\alpha}$)-induced phenotypic conversion of VSMC obtained from thoracic aorta from 4-week-old SD rats. Stimulation of the contractile phenotype of VSMCs with $TNF{\alpha}$ significantly reduced the VSMC marker gene expression and KLF8. The gene expression of KLF8 was blocked by $TNF{\alpha}$ stimulation in an ERK-dependent manner. The promoter region of KLF8 contained putative Sp1, KLF4, and $NF{\kappa}B$ binding sites. Myocardin significantly enhanced the promoter activity of KLF4 and KLF8. The ectopic expression of KLF4 strongly enhanced the promoter activity of KLF8. Moreover, silencing of Akt1 significantly attenuated the promoter activity of KLF8; conversely, the overexpression of Akt1 significantly enhanced the promoter activity of KLF8. The promoter activity of SMA, $SM22{\alpha}$, and KLF8 was significantly elevated in the contractile phenotype of VSMCs. The ectopic expression of KLF8 markedly enhanced the expression of SMA and $SM22{\alpha}$ concomitant with morphological changes. The overexpression of KLF8 stimulated the promoter activity of SMA. Stimulation of VSMCs with $TNF{\alpha}$ enhanced the expression of KLF5, and the promoter activity of KLF5 was markedly suppressed by KLF8 ectopic expression. Finally, the overexpression of KLF5 suppressed the promoter activity of SMA and $SM22{\alpha}$, thereby reduced the contractility in response to the stimulation of angiotensin II. These results suggest that cross-regulation of KLF family of transcription factors plays an essential role in the VSMC phenotype.

Zoolan Gene Cloning of Zoogloea ramigera 115 (Zoogloea ramigera 115의 Zooglan Gene Cloning)

  • 이기영;전순배
    • KSBB Journal
    • /
    • v.11 no.1
    • /
    • pp.115-123
    • /
    • 1996
  • Two kinds of mutants were isolated to clone a cluster of genes essential for zooglan biosynthesis. Zoogloea ramigera 115 strains produce capsular polysaccharide. To achieve conjugation in strain 115 and to facilitate recovery of product, a capsule non-forming strain was isolated via successive centrifugation and screening. The other kind of mutants devoid of or producing altered exopolysaccharides were obtained using classical transposon(Tn5) technique and screened for altered colony morphology and celluflour binding properties. Complementation of these mutants was achieved with Z. ramigera 115 slime gene library constructed in a broad host range cosmid vector and helper plasmid by triparental conjugation.

  • PDF

Functional Enhancers As Master Regulators of Tissue-Specific Gene Regulation and Cancer Development

  • Ko, Je Yeong;Oh, Sumin;Yoo, Kyung Hyun
    • Molecules and Cells
    • /
    • v.40 no.3
    • /
    • pp.169-177
    • /
    • 2017
  • Tissue-specific transcription is critical for normal development, and abnormalities causing undesirable gene expression may lead to diseases such as cancer. Such highly organized transcription is controlled by enhancers with specific DNA sequences recognized by transcription factors. Enhancers are associated with chromatin modifications that are distinct epigenetic features in a tissue-specific manner. Recently, super-enhancers comprising enhancer clusters co-occupied by lineage-specific factors have been identified in diverse cell types such as adipocytes, hair follicle stem cells, and mammary epithelial cells. In addition, noncoding RNAs, named eRNAs, are synthesized at super-enhancer regions before their target genes are transcribed. Many functional studies revealed that super-enhancers and eRNAs are essential for the regulation of tissue-specific gene expression. In this review, we summarize recent findings concerning enhancer function in tissue-specific gene regulation and cancer development.

Molecular cloning and restriction analysis of aspartokinase gene (HOM3) in the yeast, saccharomyces cerevisiae (아스파테이트족 아미노산 대사에 관여하는 효모유전자(HOM3)의 클로닝 및 구조분석)

  • 최승일;이호주
    • Korean Journal of Microbiology
    • /
    • v.26 no.1
    • /
    • pp.32-36
    • /
    • 1988
  • The yeast gene HOM3 encodes aspartokinase, which catalyses the first step (aspartate to and from beta-aspartyl phosphate) of common pathway to threonine and methionine. The yeast HOM3 gene expression is known to be regulated by threonine and methionine specific control, and also by general control of amino acid biosynthesis. Isolation and characterization of the HOM3 gene are essential for the molecular genetic study on its regulation of expression. A recombinant plasmid pSC3 (15.5kb, vector YCp50) has been cloned into E. coli HB101 from yeast genomic library through their complementing activity of HOM3 mutation in a yeast recipient strain M34-24B. Organization of the plasmid was characterized by delineation of restriction cleavage sites in the insert fragment.

  • PDF

Foamy Virus Integrase in Development of Viral Vector for Gene Therapy

  • Kim, Jinsun;Lee, Ga-Eun;Shin, Cha-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1273-1281
    • /
    • 2020
  • Due to the broad host suitability of viral vectors and their high gene delivery capacity, many researchers are focusing on viral vector-mediated gene therapy. Among the retroviruses, foamy viruses have been considered potential gene therapy vectors because of their non-pathogenicity. To date, the prototype foamy virus is the only retrovirus that has a high-resolution structure of intasomes, nucleoprotein complexes formed by integrase, and viral DNA. The integration of viral DNA into the host chromosome is an essential step for viral vector development. This process is mediated by virally encoded integrase, which catalyzes unique chemical reactions. Additionally, recent studies on foamy virus integrase elucidated the catalytic functions of its three distinct domains and their effect on viral pathogenicity. This review focuses on recent advancements in biochemical, structural, and functional studies of foamy virus integrase for gene therapy vector research.

Identification and Characterization of the Vibrio vulnificus rtxA Essential for Cytotoxicity in vitro and Virulence in Mice

  • Lee, Jeong-Hyun;Kim, Myung-Won;Kim, Byoung-Sik;Kim, Seung-Min;Lee, Byung-Cheol;Kim, Tae-Sung;Choi, Sang-Ho
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.146-152
    • /
    • 2007
  • A mutant exhibiting decreased cytotoxic activity toward INT-407 intestinal epithelial cells and carrying a mutation in the rtx gene cluster that consists of rtxCA and rtxBDE operons was screened from a library of V. vulnificus mutants. The functions of the rtxA gene, assessed by constructing an isogenic mutant and evaluating its phenotypic changes, demonstrated that RtxA is essential for the virulence of V. vulnificus in mice as well as in tissue cultures.

Schizosaccharomyces pombe nup97, which Genetically Interacts with mex67, is Essential for Growth and Involved in mRNA Export

  • Cho, Hyun-Jin;Hwang, Duk-Kyung;Jung, Sun-Im;Yoon, Jin-Ho
    • Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.344-349
    • /
    • 2007
  • We have isolated previously three synthetic lethal mutants in Schizosaccharomyces pombe, which genetically interact with mex67, in order to identify the genes involved in mRNA export. A novel nup97 gene was isolated by complementation of the growth defect in one of the synthetic lethal mutants, SLMex3. The nup97 gene contains one intron and encodes an 851 amino-acid protein that is similar to nucleoporins, Nppl06p in S. pombe and Nic96p in Saccharomyces cerevisiae. The nup97 gene is essential for vegetative growth, and nup97 null mutant harboring pREP41X-Nup97 showed $poly(A)^+$ RNA export defect when expression of nup97 is repressed in the presence of thiamine. These results suggest that nup97 is involved in mRNA export from the nucleus to cytoplasm.

Partial AUC maximization for essential gene prediction using genetic algorithms

  • Hwang, Kyu-Baek;Ha, Beom-Yong;Ju, Sanghun;Kim, Sangsoo
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.41-46
    • /
    • 2013
  • Identifying genes indispensable for an organism's life and their characteristics is one of the central questions in current biological research, and hence it would be helpful to develop computational approaches towards the prediction of essential genes. The performance of a predictor is usually measured by the area under the receiver operating characteristic curve (AUC). We propose a novel method by implementing genetic algorithms to maximize the partial AUC that is restricted to a specific interval of lower false positive rate (FPR), the region relevant to follow-up experimental validation. Our predictor uses various features based on sequence information, protein-protein interaction network topology, and gene expression profiles. A feature selection wrapper was developed to alleviate the over-fitting problem and to weigh each feature's relevance to prediction. We evaluated our method using the proteome of budding yeast. Our implementation of genetic algorithms maximizing the partial AUC below 0.05 or 0.10 of FPR outperformed other popular classification methods.