• 제목/요약/키워드: erythrocyte ghosts

검색결과 8건 처리시간 0.023초

플라스미드 유전자 함유 혈구 세포 입자의 제조 (Encapsulation of Plasmid DNA in Erythrocyte Ghosts)

  • 변향민;박상은;김정목;고정재;오유경
    • Journal of Pharmaceutical Investigation
    • /
    • 제32권3호
    • /
    • pp.181-184
    • /
    • 2002
  • This study reports the encapsulation of plasmid DNA in erythrocyte ghosts. The plasmid DNA was encapsulated into erythrocyte ghosts using three methods; osmotic shock, electroporation in isotonic medium, and e1ectroporation in hypotonic medium. Of three methods, electroporation in hypotonic medium resulted in the highest encapsulation efficiency of plasmid DNA. The morphology of erythrocyte ghosts prepared by electroporation in hypotonic medium was similar to that by osmotic shock alone. The circulation time of plasmid DNA in mice was prolonged by administration in erythrocyte ghost-encapsulated forms. These results indicated the potential of erythrocyte ghosts for biocompative nonviral delivery system of therapeutic genes for hematological diseases.

Erythrocyte Ghost의 광산화반응에 미치는 인삼추출물의 영향 (Effect of Ginseng Extracts on Photosensitized Peroxidation of Human Erythrocyte Ghosts)

  • 백태홍;천현자;강병수
    • Journal of Ginseng Research
    • /
    • 제14권1호
    • /
    • pp.30-35
    • /
    • 1990
  • The photooxidation of human erythrocyte ghosts has been studied and the effects of ginseng water extract on it have been investigated. In the presence of photosensitizer, rose bengal, human erythrocyte ghosts have caused photooxidation by lO2 and produced lip)id hydroperoxides. Ginseng water extract and d-${\alpha}$-tocofherol have inhibited photooxidation, ,whereas ascorbic acid has developed in low concentrations but inhibited in high concentrations. On the other hand, amounts of lipid hydroperoxide produced by photooxidation were decreased by addition of catalase after irradiation and according to sequential addition of ginseng water extract into it, the formation of lipid hydrolleroxide was decreased simultaneously.

  • PDF

Effect of Lipid Peroxidation on the Fluidity of Erythrocyte Ghost and Phospholipid Liposomal Membranes

  • Han, Suk-Kyu;Kim, Min;Park, Yeong-Hun;Park, Eun-Ju;Lee, Jeong-Hee
    • Archives of Pharmacal Research
    • /
    • 제15권4호
    • /
    • pp.309-316
    • /
    • 1992
  • The effects of lipid peroxidation on the fluidity of the lipid bilayers of the human erythrocyte ghosts and egg-lecithin phospholipid liposomes have been studied. For the measurements of the peroxidation extent and the fluidity of the membranes, the thiobarbituric acid-reactive substances and the fluorescence depolarization of 1, 6-diphynyl-1, 3, 5-hexatriene labelled into the membrane were employed, respectively. The lipid peroxidation was performed in hypoxanthine/xanthine oxidase/ferrous ion, and hydrogen peroxide/ferrous ion systems. The results of these experiments show that both of the xanthine oxidase and hydrogen peroxide systems effectively. The lipid peroxidation decreased the fluidity of the membranes, especially at the very early stage of the peroxidation reaction. The decrease in the fluidity of membrane by the lipid peroxidation has been ascribed to the alteration of the polyunsaturated acyl chains of lipids and cross linkages among the membrane components. However, under drastic condition of lipid peroxidation, tdhe fluidity of the membrane rather increased possibly due to the deterioration of the membrane integrity by the peroxidation. Morphological change of the erythrocyte on peroxidation has also been observed.

  • PDF

혈구세포 수송체로 투여된 트레일 유전자의 혈중 발현 지속 효과 (Prolonged Gene Expression Following Erythrocyte-Mediated Delivery of TRAIL Plasmid DNA)

  • 변향민;권경애;신지영;오유경
    • Journal of Pharmaceutical Investigation
    • /
    • 제33권4호
    • /
    • pp.261-265
    • /
    • 2003
  • Tumor necrosis facto-related apoptosis-inducing ligand (TRAIL) is a recently identified member of the tumor necrosis factor cytokine superfamily. TRAIL has been shown to induce apoptosis in a number of tumor cells whereas cells from most of normal tissues are highly resistant to TRAIL-induced apoptosis. These observations have raised considerable interest in the use of TRAIL in tumor therapy. In this study we report the biodistribution fates and serum expression pattern of plasmid DNA encoding TRAIL (pTRAIL) delivered in erythrocyte ghosts (EG). pTRAIL was loaded into EG by electroportion in a hypotonic medium The mRNA expression of pTRAIL was prolonged following delivery in EG-encapsulated forms. EG containing pTRAIL showed significant levels of mRNA expression in the blood over 9 days. The organ expression patterns of pTRAIL delivered via EG, however, did not significantly differ from those of naked pTRAIL, indicating that the expression-enhancing effect of EG containing pTRAIL was localized to the blood. These results suggest that pTRAIL-loaded EG might be of potential use in the treatment of hematological diseases such as TRAIL-sensitive leukemia.

Effects of Calcium Channel Blockers on Human Erythrocyte Ghost Membranes

  • Park, Aeh-Jin;Shin, Young-Hee;Lee, Chi-Ho
    • Archives of Pharmacal Research
    • /
    • 제18권6호
    • /
    • pp.402-409
    • /
    • 1995
  • The effects of calcium channel blockers (CAB's) verapamil, diltiazem and nicardipine, on erythrocyte ghost membranes have been studied. Using the fluorospectroscopic method, it was observed that the fluidity of the inner layer of ghost membranes was increased with an increase of drug concentrations but did not any changes in the fluidity of the outer layer. These drugs showed protectuve effect against hypotonic hemolysis of erythrocytes. Thus, the expansion of surface area in response to corpuscular volume of erythrocytes in the presence of CAB's is seemed to play an important role in protecting hypotonic hemolysis of erythrocytes.

  • PDF

A Study on the Absorption Mechanism of Drugs through Biomembranes

  • Lee, Chi-Ho;Kim, Heun-Jo
    • Archives of Pharmacal Research
    • /
    • 제17권3호
    • /
    • pp.182-189
    • /
    • 1994
  • The effect of lipophilicity on the mechanisms of drug absorption through biomembranes was investigated empolying HPLC system and the fluorescence technique. Human erythrocyte ghost membranes were used as a model biomembrane. A series of four parabens (methyl, ethyl, rpopyl, and butyl) and p-hydroxybenzoic acid were used as the model drugs for lipophilicities and their partition coefficients were measured in Sorensen's phosphate buffer solution (pH 5)/octanol system. Absorption amount of parabens through erythrocyte ghost membranes increased with an increase of lipophilicity resulted from the addition of methylene group to the n-alkyl chain of parabens. And the effect of parabens on the fluidity of ghost membrane also increased with an increase of their lipophilicities.

  • PDF

사람 적혈구막 Band 3의 정제 및 Liposome으로의 도입 (Purification of Band 3 from the Human Erythrocyte Membrane and its Incorporation into Liposome)

  • 김재룡;김정희;이기영
    • Journal of Yeungnam Medical Science
    • /
    • 제3권1호
    • /
    • pp.41-48
    • /
    • 1986
  • 사람의 적혈구막으로부터 Band 3를 분리정제하고 이를 liposome 내로 도입시켜 그 결과를 관찰하였다. 적혈구를 약알칼리 저장액으로 용혈시켜 막을 분리한 후, 저이온강도 용액으로 처리하여 Band 4를 추출하였다. Triton X-100 추출액에 p-chloromercuribenzoate를 가하고 sucrose density gradient ultracentrifugation후 fractionation하여 Band 3를 정제하였다. phosphatidyl L-serine과 cholesterol을 1 : 1 molar ratio로 섞고 진공회전 증발기를 사용하여 chloroform을 제거한 후 Triton X-100을 제거한 Band 3용액을 가하고 sonication함으로 liposome(reverse-phase evaporation vesicle)을 만들면서 Band 3를 도입 시켰다 Band 3의 분리정제 및 liposome에 도입되었음은 sodium dodecyl sulfate-polyacrylamide gel 전기영 동 후 coomassie brilliant blue 염색으로 확인할 수 있었다.

  • PDF

Gentamicin이 적혈구막을 통한 $Na^+$ 이동에 미치는 영향 (Effect of Gentamicin on Sodium Transport in Human Erythrocytes)

  • 김경효;박계숙;김희진;신호임;안미라;강복순
    • The Korean Journal of Physiology
    • /
    • 제23권1호
    • /
    • pp.23-34
    • /
    • 1989
  • Gentamicin (GM) is a polybasic, aminoglycoside antibiotic used frequently for the treatment of serious gram-negative infections. The major limiting factors in the clinical use of GM as well as other aminoglycoside antibiotics are their nephrotoxicity and ototoxicity. The primary mechanism of cell injury in aminoglycoside toxicity appears to be the disruption of normal membrane function and the inhibition of $Na^{+}-K^{+}$ ATPase activity. There are both indirect and direct evidences which suggests that the effect of aminoglycoside antibiotics on $Na^{+}-K^{+}$ ATPase may explain, or contribute to, their toxicity. It has been shown that aminoglycoside reduce total ATPase activity (Kaku et al., 1973) and $Na^{+}-K^{+}$ ATPase activity (linuma et al., 1967) in the stria vascularis and spiral ligament of the guinea-pig cochlea. Lipsky and Lietman (1980) reported that aminoglycoside antibitoics inhibited the activity of $Na^{+}-K^{+}$ ATPase in microsomal fractions of the cortex and medulla of the guinea-pig kidney, isolated rat renal tubule and human erythrocyte ghosts. The present invstigation was undertaken to elucidate the mechanism of GM on human erythrocytes by examining its effect on $Na^{+}-K^{+}$ ATPase activity, actives sodium and potassium transport across red blood cell and $^{3}H-ouabain$ binding to red blood cell membranes. The results obtained are summarized as follows: 1) CM inhibited significantly both the activity of total ATPase and $Na^{+}-K^{+}$ ATPase at all concentrations tested. 2) GM inhibited active $^{22}Na$ efflux across red blood cell. When ouabain is present, the rate of $^{22}Na$ efflux was completely inhibited. When both GM and ouabain were added, the inhibitory effect of active $^{22}Na$ efflux was more pronounced. 3) Active $^{86}Rb$ influx was inhibited significantly by GM. In the presence of ouabain, the rate of $^{86}Rb$ influx is markedly inhibited. But $^{86}Rb$ influx is not appreciably altered by the presence of both GM and ouabain. 4) In the presence of GM, $^{3}H-ouabain$ binding to red blood cell membrane increased. From the above results, it may be concluded that the inhibition of active sodium and potassium transport across red blood cell by gentamicin appears to be due to the inhibition of $Na^{+}-K^{+}$ ATPase activity and an increase in ouabain binding to red blood cell membranes.

  • PDF