• Title/Summary/Keyword: error range

Search Result 2,811, Processing Time 0.034 seconds

Characteristics of Elderly Drivers' Reach Motion to Seat Belt (고령운전자 시트 벨트 뻗침 거동 특성 분석)

  • Choi, Woo-Jin;Kwak, Seung-Ho;Choi, Hyung-Yun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.73-82
    • /
    • 2010
  • The purpose of this study is to understand motion characteristics of older drivers during reaching seat belt compared to young drivers and to provide design guidelines in order to reduce discomfort for the elderly. The whole body kinematics of each subject was captured using 12-camera motion analysis system. Subjective ratings on discomfort levels were obtained simultaneously using a questionnaire. This paper first presents the result of motion characteristics of elderly drivers' reach motion to seat belt. Compared to young drivers, older drivers performed seat belt reach motions less efficiently and moved slower due to mostly the movement error. Older drivers also made use of reduced joint range of motion in cervical left rotation, lumbar left rotation and right shoulder adduction, which can be explained by their reduced active range of motions (AROMs). To compensate for their reduced joint range of motion, older drivers rotated pelvis more.

Control of Focal Plane Compensation Device for Image Stabilization of Small Satellite Camera (소형 위성 카메라의 영상안정화를 위한 초점면부 보정장치의 제어)

  • Kang, Myoungsoo;Hwang, Jaihyuk;Bae, Jaesung
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.86-94
    • /
    • 2016
  • In this paper, position control of focal plane compensation device using piezoelectric actuator is conducted. The forcal plane compensation device installed on earth observation satellite camera compensates micro-vibration from reaction wheels. In this study, four experimental models of the open-loop compensation device are derived using MATLAB system identification toolbox in the input range of 0~50Hz. Subsequently, the PID controller for each model is designed and the performance test of each controller is conducted through MATLAB/Simulink. According to frequency response analysis of the closed-loop compensation device system, the PID controller designed for 38~50Hz input range has enough tracking performance for the whole 0~50Hz input range. The maximum output error is about $1{\mu}m$ for the input range. The simulation results has been verified by the experimental method.

Selection of Optical Glasses Using a Chromatic-Aberration Correction Method for the Whole Visible Range Plus a Telecentric Lens Design Applying the Method (가시광선 전대역의 색수차보정을 위한 광학유리의 선정과 이를 적용한 텔레센트릭 렌즈의 설계)

  • Yu, Seung Moon;Jung, Mee Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.4
    • /
    • pp.217-225
    • /
    • 2015
  • This paper shows the best selection and combination of glass in lens design, to correct a chromatic aberration using achromatic and apochromatic conditions. Using this research result, we have designed a telecentric lens for machine vision in the full range of visible light. We obtain good optical quality in the form of a quite small RMS wavefront error of $0.057{\lambda}$ in the super-broadband wavelength range 380 nm -780 nm. This result is better than that for a common telecentric lens in the visible wavelength range 486.1-656.2 nm.

Recognition of Gap between base Plates for Automated Welding of Thick Plates (후판 자동용접을 위한 용접물의 갭 측정)

  • Yi, Hwa-Cho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.37-45
    • /
    • 1999
  • Many automated welding equipment are used in the industry. However, there are some problems to get quality welds because of the geometric error, thermal distortion, and incorrect joint fit-up. These factors can make the gap between base plates in case of a thick plate welding. The welding product with the quality welds can not be obtained without consideration of the gap. In this paper, the robot path and welding conditions are modified to get the quality weld by detecting the position and size of the gap. In this work, a low-priced laser range sensor is used. The 3-dimensional information is obtained using the motion of a robot, which holds a laser range sensor. The position and size of the gap is calculated using signal processing of the measured 3-dimensional information of joint profile geometry. The data measured by a laser range sensor is segmented by an iterative end point method. The segmented data is optimized by the least square method. The existence of gap is detected by comparing the data with the segmented shape of template. The effects of robot measuring speed and gap size are also tested. The recognizability fo the gap is verified as good by comparing the real joint profile and the calculated joint profile using the signal processing.

  • PDF

Characterization of Thin Film Materials by Nanoindentation and Scanning Probe Microscopy (나노인덴테이션과 주사탐침현미경을 이용한 박막 재료의 특성평가)

  • Kim, Bong-seob;Yun, Jon-do;Kim, Jong-kuk
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.606-612
    • /
    • 2003
  • Surface and mechanical properties of thin films with submicron thickness was characterized by nanoindentation with Berkovich and Vickers tips, and scanning probe microscopy. Nanoindention was made in a depth range of 15 to 200 nm from the surface by applying tiny force in a range from 150 to $9,000 \mu$N. Stiffness, contact area, hardness, and elastic modulus were determined from the force-displacement curve obtained. Reliability was first tested by using fused quartz, a standard sample. Elastic modulus and hardness values of fused quartz measured were the same as those reported in the literature within two percent of error. Mechanical properties of ITO thin film were characterized in a depth range of 15∼200nm. As indentation depth increased, elastic modulus and hardness decreased by substrate effect. Ion beam deposited DLC thin films were indented in a depth range of 40∼50 nm. The results showed that the DLC thin film using benzene and bias voltage 0∼-50 V has elastic modulus and hardness value of 132 and 18 GPa respectively. Pure DLC thin films showed roughnesses lower than 0.25 nm, but silicon-added DLC thin films showed much higher roughness values, and the wavy surface morphology.

Precision orbit determination with SLR observations considering range bias estimation

  • Kim, Young-Rok;Park, Sang-Young;Park, Eun-Seo;Park, Jong-Uk;Jo, Jung-Hyun;Park, Jang-Hyun
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.27.5-28
    • /
    • 2010
  • The unexpected observation condition or insufficient measurement modeling can lead to uncertain measurement errors. The uncertain measurement error of orbit determination problem typically consists of noise, bias and drift. It must be removed by using a proper estimation process for better orbit accuracy. The estimation of noise and drift is not easy because of their random or unpredictable variation. On the other hand, bias is a constant difference between the mean of the measured values and the true value, so it can be simply removed. In this study, precision orbit determination with SLR observations considering range bias estimation is presented. The Yonsei Laser-ranging Precision Orbit Determination System (YLPODS) and SLR NP (Normal Point) observations of CHAMP satellite are used for this work. The SLR residual test is performed to estimate the range bias of each arc. The result shows that we can get better orbit accuracy through range bias estimation.

  • PDF

Performance improvement of long-range underwater acoustic communication in deep water using spatiotemporal diversity (심해 장거리 환경에서 시공간 다이버시티를 이용한 수중음향통신성능 향상)

  • Park, Heejin;Kim, Donghyeon;Kim, J.S.;Hahn, Joo Young;Park, Joung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.587-592
    • /
    • 2019
  • ISI (Inter Symbol Interference) reduces the performance of UAComm (Underwater Acoustic Communication). This paper shows that the performance of UAComm can be improved through the spatiotemporal diversity method that is the combination of spatial diversity and temporal diversity methods. By using spatiotemporal diversity, the array aperture was reduced to increase the efficiency of the UAComm system. It is also verified using the experimental data of BLAC18 (Biomimetic Long range Acoustic Communication 18) conducted in October 2018.

An Improved Fast Camera Calibration Method for Mobile Terminals

  • Guan, Fang-li;Xu, Ai-jun;Jiang, Guang-yu
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1082-1095
    • /
    • 2019
  • Camera calibration is an important part of machine vision and close-range photogrammetry. Since current calibration methods fail to obtain ideal internal and external camera parameters with limited computing resources on mobile terminals efficiently, this paper proposes an improved fast camera calibration method for mobile terminals. Based on traditional camera calibration method, the new method introduces two-order radial distortion and tangential distortion models to establish the camera model with nonlinear distortion items. Meanwhile, the nonlinear least square L-M algorithm is used to optimize parameters iteration, the new method can quickly obtain high-precise internal and external camera parameters. The experimental results show that the new method improves the efficiency and precision of camera calibration. Terminals simulation experiment on PC indicates that the time consuming of parameter iteration reduced from 0.220 seconds to 0.063 seconds (0.234 seconds on mobile terminals) and the average reprojection error reduced from 0.25 pixel to 0.15 pixel. Therefore, the new method is an ideal mobile terminals camera calibration method which can expand the application range of 3D reconstruction and close-range photogrammetry technology on mobile terminals.

A Study on Dynamic Safety Navigation Envelopes Considering a Ship's Position Uncertainty

  • Pyo-Woong Son;Youngki Kim;Tae Hyun Fang;Kiyeol Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.289-294
    • /
    • 2023
  • As technologies such as cameras, Laser Imaging, Detection, and Ranging (LiDAR), and Global Navigation Satellite Systems (GNSS) become more sophisticated and common, their use in autonomous driving technologies is being explored in various fields. In the maritime area, technologies related to collision avoidance between ships are being developed to evaluate and avoid the risk of collision between ships by setting various scenarios. However, the position of each vessel used in the process of developing collision avoidance technology between vessels uses data obtained through GNSS, and may include a position error of 10 m or more depending on the situation. In this paper, a study on the dynamic safety navigation range including the positional inaccuracy of the ship is conducted. By combining the concept of the protection level obtained using GNSS raw data with a conventional safe navigation range, a safer navigation range can be calculated for dynamic navigation. The calculated range is verified using data obtained while sailing in an actual sea environment.