• Title/Summary/Keyword: error in test

Search Result 3,720, Processing Time 0.035 seconds

Performance Evaluation of Wavelet-based ECG Compression Algorithms over CDMA Networks (CDMA 네트워크에서의 ECG 압축 알고리즘의 성능 평가)

  • 김병수;유선국
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.9
    • /
    • pp.663-669
    • /
    • 2004
  • The mobile tole-cardiology system is the new research area that support an ubiquitous health care based on mobile telecommunication networks. Although there are many researches presenting the modeling concepts of a GSM-based mobile telemedical system, practical application needs to be considered both compression performance and error corruption in the mobile environment. This paper evaluates three wavelet ECG compression algorithms over CDMA networks. The three selected methods are Rajoub using EPE thresholding, Embedded Zerotree Wavelet(EZW) and Wavelet transform Higher Order Statistics Coding(WHOSC) with linear prediction. All methodologies protected more significant information using Forward Error Correction coding and measured not only compression performance in noise-free but also error robustness and delay profile in CDMA environment. In addition, from the field test we analyzed the PRD for movement speed and the features of CDMA 1X. The test results show that Rajoub has low robustness over high error attack and EZW contributes to more efficient exploitation in variable bandwidth and high error. WHOSC has high robustness in overall BER but loses performance about particular abnormal ECG.

A Study on the Test Evaluation Method of LKAS Using a Monocular Camera (단안 카메라를 이용한 LKAS 시험평가 방법에 관한 연구)

  • Bae, Geon Hwan;Lee, Seon Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.3
    • /
    • pp.34-42
    • /
    • 2020
  • ADAS (Advanced Driver Assistance Systems) uses sensors such as camera, radar, lidar and GPS (Global Positioning System). Among these sensors, the camera has many advantages compared with other sensors. The reason is that it is cheap, easy to use and can identify objects. In this paper, therefore, a theoretical formula was proposed to obtain the distance from the vehicle's front wheel to the lane using a monocular camera. And the validity of the theoretical formula was verified through the actual vehicle test. The results of the actual vehicle test in scenario 4 resulted in a maximum error of 0.21 m. The reason is that it is difficult to detect the lane in the curved road, and it is judged that errors occurred due to the occurrence of significant yaw rates. The maximum error occurred in curve road condition, but the error decreased after lane return. Therefore, the proposed theoretical formula makes it possible to assess the safety of the LKA system.

ERROR PROPAGATION ANALYSIS FOR IN-ORBIT GOCI RADIOMETRIC CALIBRATION

  • Kang, Gm-Sil;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.92-95
    • /
    • 2008
  • The Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of ocean-color around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. The GOCI has been designed to provide multi-spectral data to detect, monitor, quantify, and predict short term changes of coastal ocean environment for marine science research and application purpose. The target area of GOCI observation covers sea area around the Korean Peninsula. Based on the nonlinear radiometric model, the GOCI calibration method has been derived. The radiometric model of GOCI has been validated through radiometric ground test. From this ground test result, GOCI radiometric model has been changed from second order to third order. In this paper, the radiometric test performed to evaluate the radiometric nonlinearity is described and the GOCI radiometric error propagation is analyzed. The GOCI radiometric calibration is based on onboard calibration devices; solar diffuser, DAMD (Diffuser Aging Monitoring Device). The radiometric model error due to the dark current nonlinearity is considered as a systematic error. Also the offset correction error due to gain/offset instability is considered. The radiometric accuracy depends mainly on the ground characterization accuracies of solar diffuser and DAMD.

  • PDF

A study on the Error Separation Method in Rotation Accuracy Measurement of High Precision Spindle Unit (고정밀 스핀들의 회전정밀도 측정 오차 분리법에 관한 연구)

  • Kim, Sang-Hwa;Kim, Byung-Ha;Jin, Yong-Gyoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.78-84
    • /
    • 2014
  • The rotation of a spindle unit must be accurate for high-quality machining and to improve the quality of the machine tools.Therefore, the proper measurement of the rotation accuracy and ensuring a proper analysis are very important. Separate processes are necessary because spindle errors and roundness errors associated with the test balls can both factor into the measured rotation error values. We used three methods to discern test ball errors and analyzed which could be deemed as the most proper technique in a test of the rotation accuracy of the main spindle of a machine tool.

KC-100 Full-scale Airframe Static Test (KC-100 전기체 정적 구조시험)

  • Shim, Jae-Yeul;Jung, Keunwan;Lee, Hanyong;Lee, Sang Keun;Hwang, Gui-Chul;Ahn, Seokmin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.67-75
    • /
    • 2014
  • A full-scale static test for a composite structure small aircraft (KC-100) was conducted in the KARI. The test includes 15 full-scale test and 7 local test conditions. Test requirements with test schedule, test article with dummy structures, test load generation, test system, and equipment are introduced for the test. Test load data of the 1st test condition(U1) was analyzed to evaluate an accuracy of load control for the test. The analysis results show that load data obtained during test were within tolerance of Static Null Pacing Error(SNPE) and the error value of load control was 8.6N. The error of load controls for the full-scale static test using dozens of actuators was calculated by a method suggested by authors. Test data for all other test conditions is also shown in this paper. Finally, reactions measured from restraint system of the U1 test condition show that the reaction changes as load increment. The factors which may change the change of reactions for a full-scale static test are introduced in this study.

Secondary Current Range Extension of Current Transformers by Using Two Different Current Transformers and Absolute Evaluation Technique (전류변성기 두 대와 절대 평가 기술을 이용한 2차 전류 범위 확장)

  • Kim, Yoon-Hyoung;Han, Sang-Gil;Jung, Jae-Kap;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.1
    • /
    • pp.72-78
    • /
    • 2009
  • We have developed a current range extension method to obtain the ratio error and phase displacement of a current transformer (CT) by using absolute evaluation method and two different CTs. The method was applied to CTs under test with the current ratios in the range of 5,000 A / 1 A - 20,000 A / 1 A. The ratio error and phase displacement of the CT under test obtained in this study are consistent with those measured at the national institute in Germany using the same CT under test within an expanded uncertainty (k = 2) in the overall current ratios.

Absolute Evaluation Method to Obtain Ratio Error and Phase Displacement of Current Transformers (전류변성기의 비오차와 위상오차의 절대 평가 기술)

  • Kim, Yoon-Hyoung;Jung, Jae-Kap;Han, Sang-Gil;Koo, Kyung-Wan;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.153-159
    • /
    • 2008
  • We have developed an absolute evaluation method to obtain the ratio error and phase displacement of a current transformer (CT) without any precise standard CT by measuring four parameters in a CT equivalent circuit. The excitation admittance in the CT equivalent circuit can be obtained by employing standard resistors with negligible reactive component. The secondary leakage impedance in the CT equivalent circuit can be measured using a universal impedance bridge. The method was applied to CTs under test with the wide current ratios in the range of 5 A / 5 A - 5,000 A / 5 A and 5 A / 1 A - 5,000 A / 1 A. The ratio error and phase displacement of the CT under test obtained in this study are consistent with those measured at the national institute in Canada using the same CT under test within an expanded uncertainty (k = 2) in the overall current ratios.

Controller Design by Error Shape and Steady-State Error Analysis for a Feed Drive System in CNC Milling Machine (CNC 밀링머신 이송장치의 오차유형 및 정상상태 오차해석에 의한 제어기 설계)

  • Lee Gun-Bok;Gil Hyeong-Gyeun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.52-60
    • /
    • 2005
  • This paper deals with the position control fur a feed drive system in CNC milling machine, which utilizes a modified error signal for the elimination of steady-state error. A linear time-invariant (LTI) system has consistent properties in response to standard test signal inputs. Those also appear in an error curve acquired from the response. From such properties, constructed is an error model for the position control of the feed drive. And then added is the output of the error model to the current error signal. Consequently the resulting proportional control system brings performance improvement in view of the steady-state error. The effectiveness of the proposed scheme is confirmed through simulations and experiments.

Pressure analysis in grouting and water pressure test to achieving optimal pressure

  • Amnieh, Hassan Bakhshandeh;Masoudi, Majid;Kolahchi, Reza
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.685-699
    • /
    • 2017
  • In order to determine the rate of penetrability, water pressure test is used before the grouting. One of the parameters which have the highest effect is pressure. Mathematical modeling is used for the first time in this study to determine the optimum pressure. Thus, the joints that exist in the rock mass are simulated using cylindrical shell model. The joint surroundings are also modeled through Pasternak environment. In order to validate the modeling, pressure values obtained by the model were used in the sites of Seymareh and Aghbolagh dams and the relative error rates were measured considering the differences between calculated and actual pressures recorded in these operations. In water pressure test, in Seymareh dam, the error values were equal to 4.75, 3.93, 4.8 percent and in the Aghbolagh dam, were 22.43, 5.22, 2.6 percent and in grouting operation in Seymareh dam were equal to 9.09, 32.50, 21.98, 5.57, 29.61 percent and in the Aghbolagh dam were 2.96, 5.40, 4.32 percent. Due to differences in rheological properties of water and grout and based on the overall results, modeling in water pressure test is more accurate than grouting and this error in water pressure test is 7.28 percent and in grouting is 13.92 percent.

Rigorous System Testing by Supporting Vertical Traceability (수직 추적가능성을 제공하는 엄격한 시스템 테스트)

  • Seo, Kwang-Ik;Choi, Eun-Man
    • The KIPS Transactions:PartD
    • /
    • v.14D no.7
    • /
    • pp.753-762
    • /
    • 2007
  • Traceability has been held as an important factor in testing activities as well as model driven development. Vertical traceability affords us opportunities to improve manageability from models and test cases to code in testing and debugging phase. Traceability also makes overcome to difficulties of going up-and-down abstraction level to find out error spot of faults discovered by testing This paper represents a vertical test method which connects a system test level and an integration test level in a test stage by using UML. Experiment of how traceability works and how effective focus on error spots has been included using concrete examples of tracing from models to the code.