• Title/Summary/Keyword: error generator

Search Result 359, Processing Time 0.027 seconds

A Study on the SVC System Stabilization Using a Neural Network (신경회로망을 이용한 SVC 계통의 안정화에 관한 연구)

  • 정형환;허동렬;김상효
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.3
    • /
    • pp.49-58
    • /
    • 2000
  • This paper deals with a systematic approach to neural network controller design for static VAR compensator (SVC) using a learning algorithm of error back propagation that accepts error and change of error as inputs, the momentum learning technique is used for reduction of learning time, to improve system stability. A SVC, one of the Flexible AC Transmission System(FACTS), constructed by a fixed capacitor(FC) and a thyristor controlled reactor(TCR), is designed and implemented to improve the damping of a synchronous generator, as well as controlling the system voltage.TO verify the robustness of the proposed method, we considered the dynamic response of generator rotor angle deviation, angular velocity deviation and generator terminal voltage by applying a power fluctuation and rotor angle fluctuation in initial point when heavy load and normal load. Thus, we prove the usefulness of proposed method to improve the stability of single machine-infinite bus with SVC system.

  • PDF

A Study on Bagging Neural Network for Predicting Defect Size of Steam Generator Tube in Nuclear Power Plant (원전 증기발생기 세관 결함 크기 예측을 위한 Bagging 신경회로망에 관한 연구)

  • Kim, Kyung-Jin;Jo, Nam-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.302-310
    • /
    • 2010
  • In this paper, we studied Bagging neural network for predicting defect size of steam generator(SG) tube in nuclear power plant. Bagging is a method for creating an ensemble of estimator based on bootstrap sampling. For predicting defect size of SG tube, we first generated eddy current testing signals for 4 defect patterns of SG tube with various widths and depths. Then, we constructed single neural network(SNN) and Bagging neural network(BNN) to estimate width and depth of each defect. The estimation performance of SNN and BNN were measured by means of peak error. According to our experiment result, average peak error of SNN and BNN for estimating defect depth were 0.117 and 0.089mm, respectively. Also, in the case of estimating defect width, average peak error of SNN and BNN were 0.494 and 0.306mm, respectively. This shows that the estimation performance of BNN is superior to that of SNN.

Real Time Image Acquisition System using a Image Intensifier and Position Error Verification (영상증배관을 이용한 실시간 영상획득시스템과 위치오차검증)

  • Lee, Dong-Hoon;Kim, Nam-Hoon;Jeong, Jong-Beom
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.4
    • /
    • pp.331-338
    • /
    • 2017
  • In this study, a portable x-ray generator was manufactured and a real-time image acquisition system was constructed using the image intensifier from the generated generator. We have developed a real - time position error verification system that can verify whether the artificial joint position is different from the initial image from the acquired image. The template image of the region of interest is extracted from the reference image using the pattern matching technique and compared with the image to be compared. As a result, It is shown that real - time position error verification is achieved by displaying the difference angle. This system is portable type, has a self-shielding facility, and the output of the irradiation device can be manufactured in a small size of 1kw and can be used as a portable type. In case of emergency patients in the non-destructive field for industrial use, It has proved effective for use in small areas such as feet.

Nonlinear Excitation Control Design of Generator Based on Multi-objective Feedback

  • Chen, Dengyi;Li, Xiaocong;Liu, Song
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2187-2195
    • /
    • 2018
  • In order to realize the multi-objective control of single-input multi-output nonlinear differential algebraic system (NDAS) and to improve the dynamic characteristics and static accuracy, a design method of nonlinear control with multi-objective feedback (NCMOF) is proposed, the principium of this method to arrange system poles, as well as its nature to coordinate dynamic characteristics and static accuracy of the system are analyzed in detail. Through NCMOF design method, the multi-objective control of the system is transformed into linear space, and then it is effectively controlled under the nonlinear feedback control law, the problem to balance all control objectives caused by less input and more output of the system thus is solved. Applying NCMOF design method to generator excitation system, the nonlinear excitation control law with terminal voltage, active power and rotor speed as objective outputs is designed. Simulation results show that NCMOF can not only improve the dynamic characteristics of generator, but also damp the mechanical oscillation of a generator in transient process. Moreover, NCMOF can control the terminal voltage of the generator to the setting value with no static error under typical disturbances.

Causes of Top Dead Center Error in Marine Generator Engine Power-Measuring Device (선박용 발전기 엔진 출력 측정 장치의 TDC 오차 발생 원인)

  • Lee, Ji-Woong;Jung, Gyun-Sik;Lee, Won-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.429-435
    • /
    • 2020
  • Different methods are used for determining the output of engines to obtain the indicated horsepower by measuring the combustion pressure of cylinders, and to obtain the shaft horsepower by measuring the shaft torque. It is difficult to examine the shaft torque using the condition of the cylinder, and the most accurate method used for determining the combustion pressure involves examining the combustion state of the cylinder to evaluate the engine performance and analyze the combustion of the cylinder. During the measurement, the combustion pressure is the most important parameter used for accurately determining the cylinder angle because the cylinder pressure is indicated based on the angle of the crankshaft. In this study, an encoder was used as the crank angle sensor to measure the cylinder pressure on the generator engine of the actual operating ship. The reasons for the differences between the top dead center (TDC) recognized by the encoder (TDCencoder) and the TDC recognized by the compression pressure (TDCcomp) were considered. The dif erences between the TDCcomp and TDCencoder of the cylinders measured at idle running, 25 %, 50 %, and 60 % loads were analyzed to determine for the crankshaft production effect, the crankshaft torsion effect owing to the increased rotational resistance from the increased load, and the coupling damping effect between the engine and generator. It was confirmed that the TDC error occurred up to 3° crank angle as the load of the generator increased.

A Noncoherent UWB Communication System for Low Power Applications

  • Yang, Suck-Chel;Park, Jung-Wan;Moon, Yong;Lee, Won-Cheol;Shin, Yo-An
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.210-216
    • /
    • 2004
  • In this paper, we propose a noncoherent On-Off Keying (OOK) Ultra Wide Band (UWB) system based on power detection with noise power calibration for low power applications. The proposed UWB system achieves good bit error rate performance which is favorably comparable to that of the system using the ideal adaptive threshold, while maintaining simple receiver structure, In addition, low power Analog Front-End (AFE) blocks for the proposed noncoherent UWB transceiver are proposed and verified using CMOS technology. Simulation results on the pulse generator, delay time generator and 1-bit Analog-to-Digital (AID) converter show feasibility of the proposed UWB AFE system.

An Analysis of Eddy Current Signals for the Crack-like Defects in the Steam Generator Tubes (증기발생기 전열관의 균열성 결함에 대한 와전류 신호 평가)

  • Kang, Ki-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.1
    • /
    • pp.40-45
    • /
    • 1993
  • The steam generator tubes of the nuclear power plant should be inspected using eddy current techniques. Recently the crack-like defects become a major concern for the integrity of the steam generator tubes. These defects could be detected by the MRPC(Motorized Rotating Pancake Coil) method, not by the conventional bobbin coil method. In this paper it has been attempted to estimate the length of the cracks at the tube expansion region using of MRPC technique. The lengths of both axial and circumferential cracks show a tendency of overestimation compared to the real lengths. As the depths of the defects decrease from 100% through 50% of the wall thickness, the error of the length estimation is increased.

  • PDF

Robust $H_{\infty}$ Controller Design for Steam Generator Water Level Control using Mixed $H_{\infty}$ Optimization Method (혼합 $H_{\infty}$ 최적화 기법을 이용한 견실 $H_{\infty}$ 증기발생기 수위제어기 설계)

  • 서성환;조희수;박홍배
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.363-369
    • /
    • 1999
  • In this paper, we design the robust $H_{\infty}$ controller for water level control of steam generator using a mixed $H_{\infty}$ optimization with model-matching method. Firstly we choose the desired model which has good disturbance rejection performance. Secondly we design a stabilizing controller to keep the model-matching error small and also provide sufficiently large stability margin against additive perturbations of the nominal plant. Simulation results show that proposed robust $H_{\infty}$ controller at specific power operation has satisfactory performances against the variations of load power, steam flow rate, primary circuit coolant temperature, and feedwater temperature. It can be also observed that the proposed robust $H_{\infty}$ controller exhibits better robust stability than conventional PI controller.

  • PDF

Design of Robust $H^{\infty}$ Controller for Water Level Control of Steam Generator (증기발생기 수위 제어를 위한 견실$H^{\infty}$ 제어기 설계)

  • 서성환;조희수박홍배
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.223-226
    • /
    • 1998
  • The control objective of steam generator water level in the secondary circuit of a nuclear power plant is to regulate the water level at the desired set point. The dynamics of steam generators is non-linear in nature. The task of modelling such plant is very difficult and especially so when plant operating conditions change frequently. In these reasons, conventional PI gains over all pover range will not work efficiently and a manual control is generally used in low power operation. Therefore the robust H$\infty$ controller design method should be required. In this paper, we design the robust H$\infty$ controller for water level control of steam generator using a mixed H$\infty$ optimization with model-matching method. Firstly we choose the desired model that has good disturbance rejection performance. Secondly we design a stabilizing controller to keep the model-matching error small and also provide sufficiently large stability margin against additive perturbations of the nominal plant.

  • PDF

A Study of Wind Energy Conversion System by a Secondary Control Hydrostatic Transmission (2차측 제어 정유압 변속기를 이용한 풍력발전시스템에 관한 연구)

  • Do, H.T.;Ahn, K.K.
    • Journal of Drive and Control
    • /
    • v.10 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • Wind energy has been more and more important and contributive in the energy utilization of the world. This paper proposed a novel method for Wind Energy Conversion System (WECS), in which a secondary control hydrostatic transmission (SC-HST) with two hydraulic accumulators, were employed for wind energy conversion system. This approach can absorb the excessive power of turbine, keep the generator from over-speed and maintain the speed of generator in low speed of turbine. A PID controller was designed for speed control to track a predefined speed. The simulation results indicated that the speed of the generator was ensured with the relative error less than 2%; and the efficiency of the proposed system was 70.4%.