• Title/Summary/Keyword: error compensation

Search Result 1,343, Processing Time 0.03 seconds

Study on Simulation and Calculation Method of Thermal Error Compensation System for a Ball Screw Feed Drive (볼 스크류 이송장치 열 에러 보상 시스템의 시뮬레이션 및 계산 방법에 관한 연구)

  • Xu, Zhe Zhu;Choi, Chang;Kim, Lae-Sung;Baek, Kwon-In;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.88-93
    • /
    • 2017
  • Due to the requirement of the development of the precision manufacturing industry, the accuracy of machine tools has become a key issue in this field. A critical factor that affects the accuracy of machine tools is the feed system, which is generally driven by a ball screw. Basically, to improve the performance of the feed drive system, which will be thermally extended lengthwise by continuous usage, a thermal error compensation system that is highly dependent on the feedback temperature or positioning data is employed in the machine tool system. Due to the overdependence on measuring technology, the cost of the compensation system and low productivity level are inevitable problems in the machine tool industry. This paper presents a novel feed drive thermal error compensation system method that could compensate for thermal error without positioning or temperature feedback. Regarding this thermal error compensation system, the heat generation of components, principal of compensation, thermal model, mathematic model, and calculation method are discussed. As a result, the test data confirm the correctness of the developed feed drive thermal error compensation system very well.

Improvement of the Laser Interferometer Error in the Positioning Accuracy Measurement (레이저간섭계의 위치결정정밀도 측정오차 개선)

  • 황주호;박천홍;이찬홍;김승우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.167-173
    • /
    • 2004
  • The heterodyne He-Ne laser interferometer is the most widely used sensing unit to measure the position error. It measures the positioning error from the displacement of a moving reflector in terms of the wave length. But, the wave length is affected by the variation of atmospheric temperature. Temperature variation of 1$^\circ C$ results in the measuring error of 1ppm. In this paper, for measuring more accurately the position error of the ultra precision stage, the refractive index compensation method is introduced. The wave length of the laser interferometer is compensated using the simultaneously measured room temperature variations in the method. In order to investigate the limit of compensation, the stationary test against two fixed reflectors mounted on the zerodur$\circledR$ plate is performed firstly. From the experiment, it is confirmed that the measuring error of the laser interferometer can be improved from 0.34${\mu}m$ to 0.11${\mu}m$ by the application of the method. Secondly, for the verification of the compensating effect, it is applied to estimate the positioning accuracy of an ultra precision aerostatic stage. Two times of the refractive index compensation are performed to acquire the positioning error of the stage from the initially measured data, that is, to the initially measured positioning error and to the measured positioning error profile after the NC compensation. Although the positioning error of an aerostatic stage cannot be clarified perfectly, it is known that by the compensation method, the measuring error by the laser interferometer can be improved to within 0.1${\mu}m$.

A Study of Seam Tracking and Error Compensation for Plasma Arc Welding of Corrugation Panel

  • Yang, Joo-Woong;Park, Young-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2701-2706
    • /
    • 2003
  • This paper describes weld seam tracking and error compensation methods of automatic plasma arc welding system designed for the corrugation panel that consists of a linear section and a curved section with various curvatures. Realizing automatic welding system, we are faced with two problems. One is a precise seam tracking and the other is an arc length control. Due to the complexity of the panel shape, it is difficult to find a seam and operate a torch manually in the welding process. So, laser vision sensor for seam tracking is equipped for sensing the seam position and controlling the height of a torch automatically. To attain more precise measurement of an arc length, we measure the 3D shape of the panel and analyze error factors according to the various panel states and caused errors are predicted through the welding process. Using that result, compensation algorithm is added to that of arc length control and real time error compensation is achieved. The result shows that these two methods work effectively.

  • PDF

Real time compensation for quasistatic errors of a horizantal machining center (수평 머시닝 센터의 준 정적 오차의 실시간 보정)

  • Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.154-162
    • /
    • 1997
  • A real time error compensation system was developed to improve the quasistatic volumetric accuracy of a machining center by using sensing, metrology, modeling, and computer control techniques. Including thermal errors, 32 error components are formulated in the time-space domain. Fifteen thermal sensors are used to characterize the temperature field of the machine. A compensation controller based on the IBM/PC has been linked with a CNC controller to compensate for machine errors in real time. The maximum linear displacement error in 4 body diagonals were reduced from 140 ${\mu}m$ to 34.5${\mu}m$ with this compensation system, and the spindle thermal drift in space was reduced from 147.3 ${\mu}m$ to 16.8 ${\mu}m$.

  • PDF

Compensation On-line of Errors Caused by Rotor Centrifugal Deformation for a Magnetically Suspended Sensitive Gyroscope

  • Xin, Chao-Jun;Cai, Yuan-Wen;Ren, Yuan;Fan, Ya-Hong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.1030-1041
    • /
    • 2018
  • The aim of this paper is to design a centrifugal deformation error compensation method with guaranteed performance that allows angular velocity measurement of the magnetically suspended sensitive gyroscopes (MSSGs). The angular velocity measurement principle and the structure of the MSSG are described, and the analytical model of errors caused by MSSG rotor centrifugal deformation is established. Then, an on-line rotor centrifugal deformation error compensation method based on measurement of rotor spinning speed in real-time has been designed. The common issues caused by centrifugal deformation of spinning rotors can be effectively resolved by the proposed method. Comparative experimental results before and after compensation demonstrate the validity and superiority of the error compensation method.

Error Identification and Compensation for NC Machine Tools Using the Reference Artifact (기준물을 이용한 NC 공작기계의 오차규명 및 보상제어)

  • 정성종
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.102-111
    • /
    • 2000
  • Methodology of volumetric error identification and compensation is presented to improve the accuracy of NC machine tools by using a reference artifact and a touch trigger probe. Homogeneous transformation matrix and kinematic chain are used for modeling the geo-metric and thermal errors of a three-axis vertical machining center. The reference artifact is designed and fabricated to identify the model parameters by machine tool metrology. Parameters in the error model are able to be identified and updated by direct measurement of the reference artifact on the machine tool under the actual conditions which include the thermal interactions of error sources. A volumetric error compensation system based on IBM/PC is linked with a FANUC CNC controller to compensate for the identified volumetric error in machining workspace.

  • PDF

Compensation of Position Error due to Amplitude Imbalance in Resolver Signals

  • Hwang, Seon-Hwan;Kwon, Young-Hwa;Kim, Jang-Mok;Oh, Jin-Seok
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.748-756
    • /
    • 2009
  • This paper presents a compensation algorithm for position error due to an amplitude imbalance between resolver output signals. Resolvers are typically used to obtain absolute position information for motor drive systems in severe environments. Position error is caused by an amplitude imbalance of the resolver output signals. As a result, the d- and q-axis currents of synchronous reference frame have periodic ripples in the stator fundamental frequency in permanent magnet synchronous motor (PMSM) drive systems. Therefore, this paper proposes a compensation algorithm to reduce the position error generated by the amplitude imbalance. The proposed method does not require any additional hardware, and reduces computation time with a simple integral operation according to rotor position. In addition, the position error can be directly compensated for by the estimated position error. The effectiveness of the proposed compensation algorithm is verified through several simulations and experiments.

Adaptive Particle Filter Design for Radome Aberration Error Compensation (레이돔 굴절 오차 보상을 위한 적응 파티클 필터 설계)

  • Han, Sang-Sul;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.947-953
    • /
    • 2011
  • Radome aberration error causes degradation of miss distance as well as stability of high maneuver missile system with RF seeker. A study about radome compensation method is important in this kind of missile system design. Several kinds of methods showed good compensation performance in their paper. Proposed adaptive Particle filter estimates line of sight rate excluding the radome induced error. This paper shows effectiveness of adaptive Particle filter as compensation method of radome aberration error. Robust performance of this filter depends on external aiding measurement, target acceleration. Tuning of system error covariance can make this filter unsensitive against the error of target acceleration information. This paper demonstrates practical usage of adaptive Particle filter for reducing miss distance and increasing stability against disturbance of radome aberration error through performance analysis.

Development and Performance Evaluation of Fine Stage for 3-DOF Error Compensation of a Linear Axis (직선 이송축의 3자유도 오차 보정을 위한 미세 구동 스테이지 개발 및 성능 평가)

  • Lee, Jae Chang;Lee, Min Jae;Yang, Seung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.53-58
    • /
    • 2017
  • A fine stage is developed for the 3-DOF error compensation of a linear axis in order to improve the positioning accuracy. This stage is designed as a planar parallel mechanism, and the joints are based on a flexure hinge to achieve ultra-precise positioning. Also, the effect of Abbe's offsets between the measuring and driving coordinate systems is minimized to ensure an exact error compensation. The mode shapes of the designed stage are analyzed to verify the desired 3-DOF motions, and the workspace and displacement of a piezoelectric actuator (PZT) for compensation are analyzed using forward and inverse kinematics. The 3-DOF error of a linear axis is measured and compensated by using the developed fine stage. A marked improvement is observed compared to the results obtained without error compensation. The peak-to-valley (PV) values of the positional and rotational errors are reduced by 92.6% and 91.3%, respectively.

High Accurate Creep Compensation of the Loadcell using the Strain Gauge (스트레인 게이지식 로드셀의 고정밀 크립보상)

  • Seo, Hae-Jun;Jung, Haing-Sup;Ryu, Gi-Ju;Cho, Tae-Won
    • Journal of IKEEE
    • /
    • v.16 no.1
    • /
    • pp.34-44
    • /
    • 2012
  • This paper proposes a practical compensation method by using digital signal processing over the creep error which is representative in strain gauge loadcell. The signal compensation method carry out the simulation by deciding compensation constant (time constant) and coefficient measuring the loadcell output response. Then, compensation constant and coefficient are stored on the microprocessor. By using calculated on microprocessor creep error compensation values, weighting value is showed as a digital signal by reducing error values measured through output signals of loadcell. In addition, we apply error compensation method in order to have a dedicated software for loadcell electronic scale. This technique is useful because it has great influence on error rate reduction that has been produced by conventional electronic scales (0.03%). As a result our technique gives better accuracy (0.01%~0.003%) as what is given by digital electronic scale, while it has less complex operation processing.