• Title/Summary/Keyword: error backpropagation

Search Result 133, Processing Time 0.022 seconds

Neural Network Time Series Modeling of Sensor Information of Plasma Deposition Equipment (플라즈마 증착 장비 센서 정보의 신경망 시계열 모델링)

  • Kim, You-Seok;Kim, Byung-Whan;Kwon, Gi-Chung;Han, Jeong-Hoon;Shon, Jong-Won
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.102-104
    • /
    • 2006
  • Auto-Correlated time series (ATS) model was constructed by using the backpropagation neural network. The performance of ATS model was evaluated with sensor information collected from a large volume, industrial plasma-enhanced chemical vapor deposition system. A total of 18 sensor information were collected. The effect of inclusion of past and future information were examined. For all but three sensor information with a large data variance demonstrated a prediction error less than 4%. By integrating ATS model into equipment software, process quality can be more stringently monitored while improving device throughput.

  • PDF

Constructing Neural Networks Using Genetic Algorithm and Learning Neural Networks Using Various Learning Algorithms (유전알고리즘을 이용한 신경망의 구성 및 다양한 학습 알고리즘을 이용한 신경망의 학습)

  • 양영순;한상민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.216-225
    • /
    • 1998
  • Although artificial neural network based on backpropagation algorithm is an excellent system simulator, it has still unsolved problems of its structure-decision and learning method. That is, we cannot find a general approach to decide the structure of the neural network and cannot train it satisfactorily because of the local optimum point which it frequently falls into. In addition, although there are many successful applications using backpropagation learning algorithm, there are few efforts to improve the learning algorithm itself. In this study, we suggest a general way to construct the hidden layer of the neural network using binary genetic algorithm and also propose the various learning methods by which the global minimum value of the teaming error can be obtained. A XOR problem and line heating problems are investigated as examples.

  • PDF

A Study on the Neuro-Fuzzy Control for an Inverted Pendulum System (도립진자 시스템의 뉴로-퍼지 제어에 관한 연구)

  • 소명옥;류길수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.11-19
    • /
    • 1996
  • Recently, fuzzy and neural network techniques have been successfully applied to control of complex and ill-defined system in a wide variety of areas, such as robot, water purification, automatic train operation system and automatic container crane operation system, etc. In this paper, we present a neuro-fuzzy controller which unifies both fuzzy logic and multi-layered feedforward neural networks. Fuzzy logic provides a means for converting linguistic control knowledge into control actions. On the other hand, feedforward neural networks provide salient features, such as learning and parallelism. In the proposed neuro-fuzzy controller, the parameters of membership functions in the antecedent part of fuzzy inference rules are identified by using the error backpropagation algorithm as a learning rule, while the coefficients of the linear combination of input variables in the consequent part are determined by using the least square estimation method. Finally, the effectiveness of the proposed controller is verified through computer simulation of an inverted pendulum system.

  • PDF

A Fast-Loaming Algorithm for MLP in Pattern Recognition (패턴인식의 MLP 고속학습 알고리즘)

  • Lee, Tae-Seung;Choi, Ho-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.3
    • /
    • pp.344-355
    • /
    • 2002
  • Having a variety of good characteristics against other pattern recognition techniques, Multilayer Perceptron (MLP) has been used in wide applications. But, it is known that Error Backpropagation (EBP) algorithm which MLP uses in learning has a defect that requires relatively long leaning time. Because learning data in pattern recognition contain abundant redundancies, in order to increase learning speed it is very effective to use online-based teaming methods, which update parameters of MLP pattern by pattern. Typical online EBP algorithm applies fixed learning rate for each update of parameters. Though a large amount of speedup with online EBP can be obtained by choosing an appropriate fixed rate, fixing the rate leads to the problem that the algorithm cannot respond effectively to different leaning phases as the phases change and the learning pattern areas vary. To solve this problem, this paper defines learning as three phases and proposes a Instant Learning by Varying Rate and Skipping (ILVRS) method to reflect only necessary patterns when learning phases change. The basic concept of ILVRS is as follows. To discriminate and use necessary patterns which change as learning proceeds, (1) ILVRS uses a variable learning rate which is an error calculated from each pattern and is suppressed within a proper range, and (2) ILVRS bypasses unnecessary patterns in loaming phases. In this paper, an experimentation is conducted for speaker verification as an application of pattern recognition, and the results are presented to verify the performance of ILVRS.

An Adaptive Learning Rate with Limited Error Signals for Training of Multilayer Perceptrons

  • Oh, Sang-Hoon;Lee, Soo-Young
    • ETRI Journal
    • /
    • v.22 no.3
    • /
    • pp.10-18
    • /
    • 2000
  • Although an n-th order cross-entropy (nCE) error function resolves the incorrect saturation problem of conventional error backpropagation (EBP) algorithm, performance of multilayer perceptrons (MLPs) trained using the nCE function depends heavily on the order of nCE. In this paper, we propose an adaptive learning rate to markedly reduce the sensitivity of MLP performance to the order of nCE. Additionally, we propose to limit error signal values at out-put nodes for stable learning with the adaptive learning rate. Through simulations of handwritten digit recognition and isolated-word recognition tasks, it was verified that the proposed method successfully reduced the performance dependency of MLPs on the nCE order while maintaining advantages of the nCE function.

  • PDF

Compensation of the Error due to Hole Eccentricity of Hole-drilling Method in Uniaxile Residual Stress Field Using Neural Network (신경망 기법을 이용한 1축 잔류응력장에서 구멍뚫기법의 구멍편심 오차 보정)

  • Kim, Cheol;Yang, Won-Ho;Cho, Myoung-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2475-2482
    • /
    • 2002
  • The measurement of residual stresses by the hole-drilling method has been commonly used to evaluate residual stresses in structural members. In this method, eccentricity can usually occur between the hole center and rosette gage center. In this study, the error due to the hole eccentricity is compensated using the neural network. The neural network has trained training examples of normalized eccentricity, eccentric direction and direction of maximum stress at eccentric case using backpropagation learning process. The trained neural network could compensated the error of measured residual stress in experiments with hole eccentricity. The proposed neural network is very useful for compensation of the error due to hole eccentricity in hole-drilling method.

Correction of Error due to Hole Eccentricity in Hole-drilling Method Using Neural Network (신경망 기법을 이용한 구멍뚫기법에서의 구멍 편심오차 보정)

  • Kim, Cheol;Yang, Won-Ho;Cho, Myoung-Rae;Heo, Sung-Pil
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.412-418
    • /
    • 2001
  • The measurement of residual stresses by the hole-drilling method has been commonly used to evaluate residual stresses in structural members. In this method, eccentricity can usually occur between the hole center and rosette gage center. In this study, the error due to the hole eccentricity is corrected using the neural network. The neural network has trained training examples of normalized eccentricity, eccentric direction and direction of maximum stress at eccentric case using backpropagation learning process. The trained neural network could corrected the error of measured residual stress in experiments with hole eccentricity. The proposed neural network is very useful for correction of the error due to hole eccentricity in hole-drilling method.

  • PDF

Learning control of a robot manipulator using neural networks (신경 회로망을 사용한 로보트 매니퓰레이터의 학습 제어)

  • 경계현;고명삼;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.30-35
    • /
    • 1990
  • Learning control of a robot manipulator is proposed using the backpropagation neural network. The learning controller is composed of both a linear feedback controller and a neural network-based feedforward controller. The stability analysis of the learning controller is presented. Three energy functions are selected in teaching the neural network controller : 1/2.SIGMA.vertical bar torque error vertical bar $^{2}$, 1/2.SIGMA..alpha. vertical bar position error vertical bar $^{2}$ + .betha. vertical bar velocity error vertical bar $^{2}$ + .gamma. vertical bar acceleration error vertical bar $^{2}$ and learning methods are presented. Simulation results show that the learning controller which is learned to minimize the third energy function performs better than the others in tracking problems. Some properties of the learning controller are discussed with simulation results.

  • PDF

Prediction for the Error of Hole Eccentricity in Hole-drilling Method Using Neural Network (신경회로망을 이용한 구멍뚫기법의 편심 오차 예측)

  • Kim, Cheol;Yang, Won-Ho;Chung, Ki-Hyun;Hyun, Cheol-Seung
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.956-963
    • /
    • 2001
  • The measurement of residual stresses by the hole-drilling method has been commonly used to evaluate residual stresses in structural members. In this method, eccentricity can usually occur between the hole center and rosette gage center. In this study, the error due to the hole eccentricity is predicted using the artificial neural network. The neural network has trained training examples of stress ratio, normalized eccentricity, off-centered direction and stress error using backpropagation loaming process. The prediction results of the error using the trained neural network are good agreement with FE analyzed ones.

  • PDF

Selective Attentive Learning for Fast Speaker Adaptation in Multilayer Perceptron (다층 퍼셉트론에서의 빠른 화자 적응을 위한 선택적 주의 학습)

  • 김인철;진성일
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.48-53
    • /
    • 2001
  • In this paper, selectively attentive learning method has been proposed to improve the learning speed of multilayer Perceptron based on the error backpropagation algorithm. Three attention criterions are introduced to effectively determine which set of input patterns is or which portion of network is attended to for effective learning. Such criterions are based on the mean square error function of the output layer and class-selective relevance of the hidden nodes. The acceleration of learning time is achieved by lowering the computational cost per iteration. Effectiveness of the proposed method is demonstrated in a speaker adaptation task of isolated word recognition system. The experimental results show that the proposed selective attention technique can reduce the learning time more than 60% in an average sense.

  • PDF