• Title/Summary/Keyword: erosion characteristics

Search Result 638, Processing Time 0.039 seconds

Assessment of Soil Erosion and Sedimentation in Cheoncheon Basin Considering Hourly Rainfall (시강우를 고려한 천천유역의 토양침식 및 퇴적 평가)

  • Kim, Seongwon;Lee, Daeeop;Jung, Sungho;Lee, Giha
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.4
    • /
    • pp.5-17
    • /
    • 2020
  • In recent years, the frequency of heavy rainfall associated with high rainfall intensity has been continuously increasing due to the effects of climate change; and thus also causes an increase in watershed soil erosion. The existing estimation techniques, used for the prediction of soil erosion in Korea have limitations in predicting the: average soil erosion in watersheds, and the soil erosion associated with abnormal short-term rainfall events. Therefore, it is necessary to consider the characteristics of torrential rainfall, and utilize physics-based model to accurately determine the soil erosion characteristics of a watershed. In this study, the rainfall kinetic energy equation, in the form of power function, is proposed by applying the probability density function, to analyze the rainfall particle distribution. The distributed rainfall-erosion model, which utilizes the proposed rainfall kinetic energy equation, was utilized in this study to determine the soil erosion associated with various typhoon events that occurred at Cheoncheon watershed. As a result, the model efficiency parameters of the model for NSE and RMSE are 0.036 and 4.995 ppm, respectively. Therefore, the suggested soil erosion model, coupled with the proposed rainfall-energy estimation, shows accurate results in predicting soil erosion in a watershed due to short-term rainfall events.

Characteristics of Soil Erosion on the Forest Fired Sites by Using Rainfall Simulator (인공강우장치를 이용한 산불발생지의 토양침식 특성에 관한 연구)

  • Lee, Heon Ho;Joo, Jae Duk
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.6
    • /
    • pp.649-656
    • /
    • 2006
  • The purpose of study is to measure soil erosion quantity for elapsed four years from the fire on forest fired sites of Dong-gu, Daegu. This study was conducted to investigate the characteristics of soil erosion by fire occurrence influencing on the soil erosion were. Also analysis result follows that the relations between soil erosion quantity and rainfall intensity, the slope and elapsed year. The results analysed were as follows: 1. Soil erosion by year of occurrence of forest fire was increased 1.9 to 5.7 times as rainfall intensity was increased by 30 m/hr, and 1.4 to 14.2% as degree of slope was increased by $10^{\circ}$. 2. In the first year of forest fire occurrence, soil erosion was fairly heavy for 10 minutes of initial rainfall of which rainfall intensity was 80 m/hr and degree of slope was $30^{\circ}$. The amount of soil erosion was gradually reduced as elapsed time. From two years after fire, the amount of soil erosion by rainfall intensity and degree of slope was nearly constant. 3. The amount of soil erosion by rainfall intensity and slope in accordance with elapsed time after fire was reduced 28.9 to 94.1% in three years after occurrence of forest fire as compared to the first year of fire. Soil erosion was fairly heavy by rainfall intensity and slope in the first year of fire, but it was gradually reduced from two years after fire. 4. In the analysis on influences of each factors on the amount of soil erosion on forest fired sites, the amount of soil erosion was significant differences in major impacts of each rainfall intensity, degree of slope and elapsed year after fire and interaction of rainfall intensity${\times}$degree of slope and rainfall intensity${\times}$elapsed year after fire, but no differences were observed in interaction of degree of slope${\times}$elapsed year after fire and rainfall intensity${\times}$degree of slope${\times}$elapsed year after fire. Rainfall intensity was the most affecting factor on the amount of soil erosion and followed by degree of slope and elapsed year after fire. 5. For correlation between soil erosion and affecting three factors, soil erosion showed significant positive relation with rainfall intensity and degree of slope at I % level, and significant negative relation with elapsed year after fire at 1 % level. 6. As a result of regression of affecting three factors on soil erosion. rainfall intensity was most significant impact factor in explaining the amount of soil erosion on forest fired sites, followed by degree of slope and elapsed year after forest fire. 7. The formula for estimating soil erosion using rainfall intensity, degree of slope and elapsed year after forest fire occurrence was made. S.E = 0.092R.I + 0.211D.S - 0.942E.Y(S.E : Soil erosion, R.I : Rainfall intensity, D.S : Degree of slope, E.Y : Elapsed year after forest fire occurrence)

The selection of soil erosion source area of Dechung basin (대청호유역의 토사유실 원인지역 선정)

  • Lee, Geun-Sang;Hwang, Eui-Ho;Koh, Deuk-Koo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1997-2002
    • /
    • 2007
  • This study selected soil erosion source area of Dechung basin by soil erosion estimation model and field survey for effective soil conservation planning and management. First, unit soil erosion amount of Dechung basin is analyzed using RUSLE (Revised Universal Soil Loss Equation) model based on DEM (Digital Elevation Model), soil map, landcover map and rainfall data. Soil erosion model is difficult to analyze the tracing route of soil particle and to consider the characteristics of bank condition and the types of crop, multidirectional field survey is necessary to choice the soil erosion source area. As the result of analysis of modeling value and field survey, Mujunamde-, Wondang-, Geumpyong stream are selected in the soil erosion source area of Dechung basin. Especially, these areas show steep slope in river boundary and cultivation condition of crop is also weakness to soil erosion in the field survey.

  • PDF

Applying Weighting Value Method for the Estimation of Monthly Soil Erosion (월별 토사유실량 평가를 위한 가중치 기법의 시험 적용)

  • Lee Geun-Sang;Park Jin-Hyeog;Hwang Eui-Ho;Koh Deuk-Koo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.70-74
    • /
    • 2005
  • Soil particles from rainfall flow into reservoir and give lots of influence In water quality because the geological conditions and landcover characteristics of imha basin have a weakness against soil loss. Especially, much soil particles induced to reservoir in shape of muddy water when it rains a lot because the geological characteristics of imha reservoir are composed of clay and shale layer. Therefore, field turbidity data can be Indirect-standards to estimate the soil erosion of imha basin. This study evaluated annual soil erosion using GIS-based RUSLE (Revised Universal Soil Loss Equation) and developed rainfall weighting value method using time-series rainfall data to estimate monthly soil erosion. In view of field turbidity data(2003 yr), we can find out monthly soil erosion with rainfall weighting value is more efficient than that with monthly rainfall data.

  • PDF

Estimation of Soil Erosion and Sediment Outflow in the Mountainous River Catchment (산지하천 유역의 토양침식량과 유사유출량 평가)

  • Kim, DongPhil;Kim, JooHun
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.221-233
    • /
    • 2014
  • Soil erosion, transportation, and sedimentation by water flow often occur in a stream. This excessive occurrence threatens the safety of hydraulic structures, and aggravates natural disasters like flood. To prevent soil disaster according to the soil erosion, it is necessary to predict accurate sediment outflow primarily. Besides, it is very important to choose appropriate models by basin characteristics, to estimate accurate quantity of related factors, and to acquire available hydrological data. Therefore, the purpose of this study is to estimate soil erosion amount and sediment amount according to rainfall-runoff by using rainfall, discharge, and sediment in the Seolmacheon experimental catchment. And, it proposed sediment delivery ratio of the Seolmacheon catchment by result of studying sediment delivery ratio. Hereafter, this study will estimate sediment delivery ratio by basin characteristics, and formulate the method of estimating soil erosion and sediment outflow in various conditions by applying the results in other catchments.

Investigation on Cavitation-Erosion Damage with the Cavitation Amplitude of Al Alloy Materials in Seawater (해수 내 다양한 알루미늄 선박용 재료의 캐비테이션 진폭에 따른 캐비테이션-침식 손상 연구)

  • Yang, Ye-Jin;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.250-258
    • /
    • 2020
  • Recently, 5000 series and 6000 series Al alloys have been used as hull materials for small and medium-sized ships because of their excellent weldability, corrosion resistance, and durability in marine environments. Al ships can navigate at high speed due to their light weight. However, cavitation-erosion problems cause reducing durability of Al ship at high speed. In this investigation, 5052-O, 5083-H321, and 6061-T6 Al alloy materials were used to evaluate the damage characteristics with amplitude (cavitation strength). As a result of the electrochemical experiments, the corrosion current density and corrosion potential of 6061-T6 in seawater were 8.52 × 10-7 A/㎠ and -0.771 V, respectively, presenting the best corrosion resistance. The cavitation-erosion experiment showed that 5052-O had the lowest hardness value and cavitation-erosion resistance. 5052-O also had a very short incubation period. As the experiment progressed for 5052-O, pitting formed and grew in a short time, and was observed as severe cavitation-erosion damage that eliminated in large quantities. Among the three specimens, 5083-H321 presented the highest hardness value and the damage rate was the smallest after the initiation of pitting.

Study on the Control of the Erosion-Corrosion for Ni-Cr Alloy Sprayed Coating in the Marine Environment (해양환경 중에서 Ni-Cr 용사피복재의 침식-부식 억제에 관한 연구)

  • Lim, U.J.;Lee, S.Y.;Yun, B.D.
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.11 no.2
    • /
    • pp.139-149
    • /
    • 1999
  • Thermal sprayed Ni-Cr alloy coating on the carbon steel was carried out erosion-corrosion test and electrochemical corrosion test in the marine environment. The erosion-corrosion behavior and electrochemical corrosion characteristics of substrate(SS400) and thermal sprayed Ni-Cr coating was investigated. The erosion-corrosion control efficiency of Ni-Cr coating to substrate was also estimated quantitatively. The main results obtained are as follows : 1) The weight loss rate of Ni-Cr coating layer by the erosion-corrosion compared with substrate was smaller. With the lapse of time, the weight loss rate of substrate was linearly increased in $25{\Omega}{\cdot}cm$ solution, but that of Ni-Cr coating became stable. 2) The corrosion potential of substrate became less noble than that of Ni-Cr coating layer, and the corrosion current density of Ni-Cr coating became lower than that of substrate. 3) The control efficiency of erosion-corrosion of Ni-Cr coating compared to substrate became more dull than that of corrosion in $25{\Omega}{\cdot}cm$ and $5000{\Omega}{\cdot}cm$ solution.

  • PDF

History and Characteristic of Beach Erosion on Songdo Beach in East coast of Korea (송도해안의 해안침식이력 특성)

  • Kim, Kyu-Nu;Yoo, Hyung-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.1 s.162
    • /
    • pp.69-77
    • /
    • 2006
  • Songdo beach in Pohang City has suffered from bouts of beach erosion due to various reasons over many years. One of the most controversial issues is the extent of the harbor facilities effect on the beach erosion. In this study, the characteristics of erosion to Songdo beach were reanalysed using historical data and some aerial photos. Specifically, we set test cases based on the history of human modifications to the surrounding area and the topographic change around Songdo beach were investigated by 3D topographical deformation model. In the end, based on the results of these various kinds of investigation, this study found multiple causes of Songdo beach erosion.

Characteristics of the Soil Erosion with the Rainfall and Geotechnical Conditions (강우 및 지반조건에 따른 토양침식 특성)

  • Lee, Myung-Gu;Song, Chang-Seob
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.53-58
    • /
    • 2011
  • This study is analyzed the characteristics of the soil erosion with the geotechnical conditions and rainfall conditions, such as the ground slope, the compaction ratio, rainfall intensity and duration of rainfall etc. To this ends, a series of model test are conducted on clayey sands. From the results, the variation of soil loss is analyzed with the geotechnical and the rainfall conditions. The amount of soil loss is decreased as the increase of compaction ratio and is increased as the ground slope, rainfall intensity and the duration of rainfall.

Spiking characteristics of the CVD aluminum plugged on silicon direct contacts (알루미늄/실리콘 직접 접촉창에 증착된 화학 증착 알루미늄의 스파이킹 특성)

  • 이경일;김영성;주승기;라관구;김우식
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.12
    • /
    • pp.115-121
    • /
    • 1994
  • Aluminum films were chemically vapor deposited for the metallization of the integrated circuits and the spiking characteristics of the direct CVD Al/Si contacts were investigated. When the aluminum was formed by CVD uniform consumption of the substrate silicon was observed, which is quite different from the phenomena observed in sprttered Al. Silicon consumption occured during the deposition of CVD Al and the erosion depth of the silicon was several hundred $\AA$ when the continuous films were formed on the substrate while much less erosion of the silicon occured when the Al were formed in islands. When the submicron contacts were selectively plugged, contact resistances were very low and the erosion depth of the silicon was trivial.

  • PDF