• Title/Summary/Keyword: equivalent structural model

Search Result 506, Processing Time 0.021 seconds

Structural Dynamic Analysis of Bearingless Rotor System with Cross-shaped Composite Flexbeam (십자형 복합재 유연보 장착 무베어링 로터 시스템 구조동역학 해석)

  • Kim Do-Hyung;Lim In-Gyu;Lee Myung-Kyu;Lee In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.108-111
    • /
    • 2004
  • Structural dynamic characteristics and aeroelastic stability of a small-scale bearingless rotor system have been investigated. A flexbeam is one of the most important component of bearingless hub system. It must have sufficient torsional flexibility as well as baseline stiffness in order to produce feathering motion. In the present paper, a cross-shaped composite flexbeam has been proposed for a guarantee of torsional flexibility and flapwise and lagwise bending stiffness. One dimensional elastic beam model was used for the construction of a structural model. Equivalent isotropic sectional stiffness was used in the blade model, and the flexbeam was regarded as anisotropic; which has ten independent stiffness quantities. CAMRAD II has been used for the analysis of structural dynamic characteristics of the bearingless rotor system. Rotational natural frequencies and aeroelastic stability at hovering have been investigated. Analysis result shows that the cross-shaped flexbeam has the rotational natural frequency tuning capacity.

  • PDF

Numerical calculation method for response of friction pendulum system when XY shear keys are sheared asynchronously

  • Wei, Biao;Fu, Yunji;Jiang, Lizhong;Li, Shanshan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.591-606
    • /
    • 2022
  • When the friction pendulum system and shear keys work together to resist the ground motion, which inclined inputs (non 45°) to the bridge structure, the shear keys in XY direction will be sheared asynchronously, endowed the friction pendulum system with a violent curvilinear motion on the sliding surface during earthquakes. In view of this situation, firstly, this paper abandons the equivalent linearization model of friction and constructs a Spring-Coulomb friction plane isolation system with XY shear keys, and then makes a detailed mechanical analysis of the movement process of friction pendulum system, next, this paper establishes the mathematical model of structural time history response calculation by using the step-by-step integration method, finally, it compiles the corresponding computer program to realize the numerical calculation. The results show that the calculation method in this paper takes advantage of the characteristic that the friction force is always µmg, and creatively uses the "circle making method" to express the change process of the friction force and resultant force of the friction pendulum system in any calculation time step, which can effectively solve the temporal nonlinear action of the plane friction; Compared with the response obtained by the calculation method in this paper, the peak values of acceleration response and displacement response calculated by the unidirectional calculation model, which used in the traditional research of the friction pendulum system, are smaller, so the unidirectional calculation model is not safe.

Infilled frames: developments in the evaluation of cyclic behaviour under lateral loads

  • Cavaleri, L.;Fossetti, M.;Papia, M.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.4
    • /
    • pp.469-494
    • /
    • 2005
  • In order to consider the modified seismic response of framed structures in the presence of masonry infills, proper models have to be formulated. Because of the complexity of the problem, a careful definition of an equivalent diagonal pin-jointed strut, able to represent the horizontal force-interstorey displacement cyclic law of the actual infill, may be a solution. In this connection the present paper, continuing a previous work in which a generalised criterion for the determination of the ideal cross-section of the equivalent strut was formulated, analizes some models known in literature for the prediction of the lateral cyclic behaviour discussing their field of validity. As a support of the discussion, the results of an experimental investigation involving single story-single bay infilled reinforced concrete. Frames under vertical and lateral loads with different kind of infill (actually not yet so much investigated) are presented. Finally, an improvement of a model known in the literature is proposed, taking the results of the experimental tests before mentioned into account.

Structural Durability Analysis Related to Shape and Direction of Bicycle Frames (자전거 프레임의 형상과 방향에 따른 구조적 내구성 해석)

  • Cho, Jaeung;Han, Moonsik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.969-975
    • /
    • 2013
  • While accelerating, bicycle frames are subject to torsion forces and deformation. In this study, bicycle frame durability was evaluated by using structural, fatigue, and vibration experiments. Three types of models were designed by changing the frame configurations according to the shape and direction of a bicycle frame design. Because maximum equivalent stress was greatest at the saddle and at connected parts in Models 1, 2, and 3, these frame sections were most vulnerable to failure. Model 2 was the least safe, due to the increased total deformation and equivalent stresses in the top tube horizontal to the ground. Based on vibration and fatigue analysis results, Model 2 was also determined to be the least safe frame, because the head tube was placed slightly higher above the seat tube and inclined to $10^{\circ}$. These study results can be utilized in the design of bicycle frames by investigating prevention and durability against damage.

Structural Analysis for Bicycle Frame by Type (종류별 이륜차 프레임에 대한 구조해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.146-155
    • /
    • 2012
  • This study aims to analyze durability by comparing displacement on vibration at driving bicycle frame models of 1, 2, 3 and 4. Among maximum equivalent stresses at 4 kinds of models, model 1 has highest value with 410.39 MPa and becomes 30 times than model 4 with lowest value. The natural frequency number at Model 4 increases more than the other models. Among four models, the number of frequency at model 1 becomes lowest at harmonic vibration with real loading condition. In cases of four kinds of models, the maximum stress is shown near the assembly of rear wheel and the maximum displacement is shown near saddle assembly at this harmonic condition. The structural result about this study can be effectively utilized on the design of bicycle frame by investigating durability and prevention against its damage.

Modelling of tension-stiffening in bending RC elements based on equivalent stiffness of the rebar

  • Torres, Lluis;Barris, Cristina;Kaklauskas, Gintaris;Gribniak, Viktor
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.997-1016
    • /
    • 2015
  • The contribution of tensioned concrete between cracks (tension-stiffening) cannot be ignored when analysing deformation of reinforced concrete elements. The tension-stiffening effect is crucial when it comes to adequately estimating the load-deformation response of steel reinforced concrete and the more recently appeared fibre reinforced polymer (FRP) reinforced concrete. This paper presents a unified methodology for numerical modelling of the tension-stiffening effect in steel as well as FRP reinforced flexural members using the concept of equivalent deformation modulus and the smeared crack approach to obtain a modified stress-strain relation of the reinforcement. A closed-form solution for the equivalent secant modulus of deformation of the tensioned reinforcement is proposed for rectangular sections taking the Eurocode 2 curvature prediction technique as the reference. Using equations based on general principles of structural mechanics, the main influencing parameters are obtained. It is found that the ratio between the equivalent stiffness and the initial stiffness basically depends on the product of the modular ratio and reinforcement ratio ($n{\rho}$), the effective-to-total depth ratio (d/h), and the level of loading. The proposed methodology is adequate for numerical modelling of tension-stiffening for different FRP and steel reinforcement, under both service and ultimate conditions. Comparison of the predicted and experimental data obtained by the authors indicates that the proposed methodology is capable to adequately model the tension-stiffening effect in beams reinforced with FRP or steel bars within wide range of loading.

Structural Strength Analysis due to Rib Thickness of Lower Arm (로워암 리브 두께에 따른 구조 강도 해석)

  • Cho, Jaeung;Han, Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.126-134
    • /
    • 2014
  • This study investigates the structural strength analysis due to rib thickness of lower arm. At structural analysis, model 1 has the most deformation by comparing three models. As most equivalent stress is shown at the part connected with wheel knuckle, the strength becomes weaker in cases of three models. At fatigue analysis, model 1 becomes most unstabilized among three models. Model 3 has most fatigue life and the next model is model 2. The range of maximum harmonic response frequencies becomes 140 to 175Hz in cases of three models. Because the critical frequency at model 3 becomes highest among three models but the stress exceeds yield stress, model 3 becomes most unstabilized at vibration durability. As models 1 and 2 has less than yield stress, these models become stabilized. Model 2 becomes most favorable by comparing three models at structural, fatigue and vibration analyses. This study result can be effectively utilized with the design of lower arm by investigating prevention against damage and its strength durability.

Dynamically equivalent element for an emboss embeded in a plate (평판의 국부적인 기하학적 변형을 모사하는 등가 요소 생성)

  • Song, Kyung-Ho;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.335.1-335
    • /
    • 2002
  • Among many structural dynamics modification methods for plate and shell vibration problems, embedding an emboss to the surface is very efficient. But deciding an optimal position and shape using optimization algorithm needs defining geometry and remeshing the model for every iteration step to implement the method, which takes much numerical cost. (omitted)

  • PDF

A new SDOF method of one-way reinforced concrete slab under non-uniform blast loading

  • Wang, Wei;Zhang, Duo;Lu, Fangyun;Liu, Ruichao
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.595-613
    • /
    • 2013
  • A new effective model for calculation of the equivalent uniform blast load for non-uniform blast load such as close-in explosion of a one-way square and rectangle reinforced concrete slab is proposed in this paper. The model is then validated using single degree of freedom (SDOF) system with the experiments and blast tests for square slabs and rectangle slabs. Test results showed that the model is accurate in predicting the damage level on the tested RC slabs under the given explosive charge weight and stand-off distance especially for close-in blast load. The results are also compared with those obtained by conventional SDOF analysis and finite element (FE) analysis using solid elements. It is shown that the new model is more accurate than the conventional SDOF analysis and is running faster than the FE analysis.

Modeling Techniques of the Complex Shear Wall Structure on a Common Foundation (공동기초상 복합 전단벽 구조물의 모델링 기법)

  • 김종수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.241-248
    • /
    • 1997
  • The super-structure in a soil-structure interaction analysis is commonly idealized as lumped parameter system. In this study, the complex shear wall structure is modeled using three different kinds of modeling techniques : 1) full FEM comparatively as an exact solution, 2)equivalent shear spring model assuming mainly shear deformations of the wall, 3) equivalent beam-stick model made by independent static analysis. Dynamic characteristics due to three different modeling methods are compared and investigated before performing structural response analysis. The beam-stick model in comparison to shear spring model gives closer dynamic responses when compared with the full FEM, even though it requires additional unit load static analyses.

  • PDF