• Title/Summary/Keyword: equivalent structural model

Search Result 503, Processing Time 0.03 seconds

Durability Analysis on Fatigue of Caliper Cylinder (캘리퍼 실린더의 피로에 대한 내구성 해석)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.208-213
    • /
    • 2015
  • In this study, two models due to the configuration of caliper cylinder among the parts of automotive brake system are studied by structural and fatigue analysis. As the maximum equivalent stress at model 2 becomes 1.5 times lower than model 1, model 2 can endure load higher than model 1. In case of fatigue damage analysis on model 1 and 2, model 1 has the damage area more than model 2. Fatigue damage at model 1 happen more than model 2. These study results can be effectively utilized with the design on caliper cylinder by anticipating prevention against its damage and investigating durability.

Durability Evaluation by Strength due to Load Direction of Press in Common Use (상용 프레스의 하중 방향에 따른 강도에 의한 내구성 평가)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.52-59
    • /
    • 2013
  • In this study, strength and durability are investigated using structural and vibration analyses on models 1 and 2 of a press in common use. Model 1 has a structure in which a punch is applied from the upper part to the lower part; however, model 2 a structure in which a punch is applied from the lower part to the upper part. Maximum displacements of models 1 and 2 are 0.018184 mm and 0.025498 mm, respectively. Maximum equivalent stresses of models 1 and 2 are 14.144 MPa and 18.58 MPa respectively. Maximum displacements are shown for the punches of both models; model 1 has less deformation than model 2. Model 1 has more durability than model 2, as determined by an investigation of the structural strength. Using natural frequency analysis, model 1 was found to have maximum deformation in the upper part of punch. Mode1 2 has its maximum deformation in the column part of the body and the upper part of the fixed pin. Using harmonic stress analysis, the maximum deformations were found on the punch part and column part of the body in the cases of models 1 and 2, respectively. As the maximum total deformation and equivalent stress in the case of model 2 are shown to become 40 times those values of model 1, the vibration durability of model 2 can be seen to be weaker than that of model 1.

Partially confined circular members subjected to axial compression: Analysis of concrete confined by steel ties

  • Eid, R.;Dancygier, A.N.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.737-765
    • /
    • 2005
  • This paper presents a theoretical model for the behavior of partially confined axi-symmetric reinforced concrete members subjected to axial load. The analysis uses the theories of elasticity and plasticity to cover the full range of the concrete behavior. Analysis of the elastic range of the problem involves boundary conditions that are defined along a relatively simple geometry. However, extending the analysis into the plastic range involves difficulties that arise from the irregular geometry of the boundary between the plastic zone and the elastic zone, a boundary which is also changing as the axial load increases. The solution is derived by replacing the discrete steel ties with an equivalent tube of thickness $t_{eq}$ and by analyzing the concrete cylinder, which is uniformly confined by the equivalent tube. The equivalency criterion initiates from a theoretical analysis of the problem in its elastic range where further finite element analysis shows that this criterion is valid also for the plastic range of the cylinder material. According to the proposed model, the efficiency of the lateral reinforcement can be evaluated by the equivalent thickness $t_{eq}$. Comparison with published test results of confined reinforced concrete stress-strain curves shows good agreement between the test and the analytical results.

Fatigue Life Prediction of Welded Structural Material under Variable Loading (변동하중(變動荷重)을 받는 용접구조재(熔接構造材)의 피로수명(疲勞壽命) 예측(豫測))

  • Kim, Min-Gun;Kim, Dong-Yul
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.187-193
    • /
    • 1998
  • In this study, about the fatigue life of welded structure material under fluctuation loading, the prediction life which is produced by using the Histogram Recorder System was compared with the experimental life which is produced by the RMC model which is imported by conception of equivalent stress. In this result, this is represented few difference by comparing prediction life which is produced by damage analysis depended on Miner's rule, by using the Histogram Recorder System, with experimental life which is produced by the RMC load model which is imported by conception of equivalent of stress, therefore fatigue life is easily predicted by using Histogram Recorder System, and result of prediction has equivalent accuracy with other method which is more complex than the Histogram Recorder System. Besides the damage which is produced by stress which is high thirty percentage rank in the stress range of damage inducing, is nearly equal to the damage which is induced the rest of seventy percentage, there fore we can see that damage accumulation which is induced few time overload which is effected welded structure material is great.

  • PDF

Structural Vibration Analyses of a 5 MW Offshore Wind Turbine with Substructure (하부구조를 포함한 5MW급 천해용 해상 풍력발전기 구조진동해석)

  • Kim, Dong-Hwan;Kim, Dong-Hyun;Kim, Myung-Hwan;Kim, Bong-Yung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.607-613
    • /
    • 2011
  • In this study, structural vibration analyses for a 5MW offshore wind wind-turbine model have been performed for different substructure models. The efficient equivalent modeling method based on computational multi-body dynamics are applied to the finite element models of the present offshore wind turbines. Monopile and tri-pod substructure types of the typical offshore wind-turbine are considered herein. Detailed finite element modeling concepts and boundary conditions are described and the comparison results for previous analyses are presented in order to show the verification of the present numerical approach. Campbell diagrams are also present to investigate the rotational resonance characteristics of the offshore wind-turbines with different substructures.

  • PDF

자전거 프레임 특정부분의 보강효과와 프레임에 미치는 응력과 변형 연구

  • Kim, Tae-Hun;Yang, Dong-Min;Ha, Yun-Su
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.207-211
    • /
    • 2015
  • In this paper, 2 kinds of models about bike frame are simulated with static structural analysis. A bike frame with diamond type is compared with another model that Down tube is eliminated from original diamond frame. About both types of models, Property of a material and conditions of restriction & load are the same. This study shows reinforcement effects of a partial frame by adding down tube and impacts generated by applying a load at the frame such as weak points & high stress parts as well as expected deformation. The structural result of this study indicates that the equivalent stress or total deformation decreases by 57.1% or 36.4%, respectively. Also stress concentration sites are leg connecting parts, front/rear wheels fixed region and Max deformation is generated from Seat tube. In conclusion, A Down tube is highly efficient as reinforcement than frame without non down tube. Furthermore, The safety rises in case of reducing top tube thickness and increasing a reinforcement at leg connecting parts or concentration regions.

  • PDF

Design System of Doubler Plate of Ship Plate Members under Various In-plane and Out-of-plane Loads (각종 면내 및 면외 하중을 받는 선박판부재의 이중판 설계시스템 구축)

  • Ham, Juh-Hyeok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.6
    • /
    • pp.521-526
    • /
    • 2018
  • The doubler plate design system for the reinforcement of the ship plate members was developed considering various loads that subjected to the in-plane biaxial load, the in-plane shear load and out-of-plane load. The author summarized the accuracy of the development formula and equations through the equivalent plate thickness concept and finally introduced the new design system of doubler plate reinforcement. Through this study, it can be considered as an initial design guideline based on ship doubler plate reinforcement strength at areas without repeated load, or an initial structure analysis model for final structural design.

Soil interaction effects on the performance of compliant liquid column damper for seismic vibration control of short period structures

  • Ghosh, Ratan Kumar;Ghosh, Aparna Dey
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.89-105
    • /
    • 2008
  • The paper presents a study on the effects of soil-structure-interaction (SSI) on the performance of the compliant liquid column damper (CLCD) for the seismic vibration control of short period structures. The frequency-domain formulation for the input-output relation of a flexible-base structure with CLCD has been derived. The superstructure has been modeled as a linear, single degreeof-freedom (SDOF) system. The foundation has been considered to be attached to the underlying soil medium through linear springs and viscous dashpots, the properties of which have been represented by complex valued impedance functions. By using a standard equivalent linearization technique, the nonlinear orifice damping of the CLCD has been replaced by equivalent linear viscous damping. A numerical stochastic study has been carried out to study the functioning of the CLCD for varying degrees of SSI. Comparison of the damper performance when it is tuned to the fixed-base structural frequency and when tuned to the flexible-base structural frequency has been made. The effects of SSI on the optimal value of the orifice damping coefficient of the damper has also been studied. A more convenient approach for designing the damper while considering SSI, by using an established model of a replacement oscillator for the structure-soil system has also been presented. Finally, a simulation study, using a recorded accelerogram, has been carried out on the CLCD performance for the flexible-base structure.

Fatigue life prediction of multiple site damage based on probabilistic equivalent initial flaw model

  • Kim, JungHoon;Zi, Goangseup;Van, Son-Nguyen;Jeong, MinChul;Kong, JungSik;Kim, Minsung
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.443-457
    • /
    • 2011
  • The loss of strength in a structure as a result of cyclic loads over a period of life time is an important phenomenon for the life-cycle analysis. Service loads are accentuated at the areas of stress concentration, mainly at the connection of components. Structural components unavoidably are affected by defects such as surface scratches, surface roughness and weld defects of random sizes, which usually occur during the manufacturing and handling process. These defects are shown to have an important effect on the fatigue life of the structural components by promoting crack initiation sites. The value of equivalent initial flaw size (EIFS) is calculated by using the back extrapolation technique and the Paris law of fatigue crack growth from results of fatigue tests. We try to analyze the effect of EIFS distribution in a multiple site damage (MSD) specimen by using the extended finite element method (XFEM). For the analysis, fatigue tests were conducted on the centrally-cracked specimens and MSD specimens.

Structural Dynamic Analysis of Bearingless Rotor System with Cross-shaped Composite Flexbeam (십자형 복합재 유연보 장착 무베어링 로터 시스템 구조동역학 해석)

  • Kim Do-Hyung;Lim In-Gyu;Lee Myung-Kyu;Lee In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.108-111
    • /
    • 2004
  • Structural dynamic characteristics and aeroelastic stability of a small-scale bearingless rotor system have been investigated. A flexbeam is one of the most important component of bearingless hub system. It must have sufficient torsional flexibility as well as baseline stiffness in order to produce feathering motion. In the present paper, a cross-shaped composite flexbeam has been proposed for a guarantee of torsional flexibility and flapwise and lagwise bending stiffness. One dimensional elastic beam model was used for the construction of a structural model. Equivalent isotropic sectional stiffness was used in the blade model, and the flexbeam was regarded as anisotropic; which has ten independent stiffness quantities. CAMRAD II has been used for the analysis of structural dynamic characteristics of the bearingless rotor system. Rotational natural frequencies and aeroelastic stability at hovering have been investigated. Analysis result shows that the cross-shaped flexbeam has the rotational natural frequency tuning capacity.

  • PDF