• Title/Summary/Keyword: equivalent structural model

Search Result 503, Processing Time 0.028 seconds

Stochastic along-wind response of nonlinear structures to quadratic wind pressure

  • Floris, Claudio;de Iseppi, Luca
    • Wind and Structures
    • /
    • v.5 no.5
    • /
    • pp.423-440
    • /
    • 2002
  • The effects of the nonlinear (quadratic) term in wind pressure have been analyzed in many papers with reference to linear structural models. The present paper addresses the problem of the response of nonlinear structures to stochastic nonlinear wind pressure. Adopting a single-degree-of-freedom structural model with polynomial nonlinearity, the solution is obtained by means of the moment equation approach in the context of It$\hat{o}$'s stochastic differential calculus. To do so, wind turbulence is idealized as the output of a linear filter excited by a Gaussian white noise. Response statistical moments are computed for both the equivalent linear system and the actual nonlinear one. In the second case, since the moment equations form an infinite hierarchy, a suitable iterative procedure is used to close it. The numerical analyses regard a Duffing oscillator, and the results compare well with Monte Carlo simulation.

A study of dynamic responses of incorporating damaged materials and structures

  • Zhang, Wohua;Chen, Yunmin;Jin, Yi
    • Structural Engineering and Mechanics
    • /
    • v.10 no.2
    • /
    • pp.139-156
    • /
    • 2000
  • This paper concerns the development of a computational model for the damage evolution of engineering materials under dynamic loading. Two models describing the anisotropic damage evolution of a material are presented; the first is based on a power function of the effective equivalent stress and the second on the damage strain energy release rate. The methods for computing the damage accumulated in structural components and their implementation in a finite element programme are presented together with some numerical results. The dynamic response of a damaged structural component and the dynamic behaviour of a damaged material have been studied numerically. This study shows that the frequency spectrum of a damaged structure is down-shifted, while the damping ratio of damaged materials becomes higher, the amplitude of the response significantly increases and the resonance ensuing from the damage growth still occurs in a damaged structure.

The Study of Dynamic Safety Using M&S for Integrated Electro-mechanical Actuator Installed on Aircraft (M&S를 이용한 항공기용 통합형 전기식 구동장치의 동적 안전성 연구)

  • Lee, Sock-Kyu;Lee, Byoung-Ho;Lee, Jeung;Kang, Dong-Seok;Choi, Kwan-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.2
    • /
    • pp.108-115
    • /
    • 2015
  • Electro-mechanical actuator installed on aircraft consists of a decelerator which magnifies the torque in order to rotate an axis connected with aircraft control surface, a control section which controls the motor assembly through receiving orders from cockpit and a motor assembly which rotates the decelerator. Electro-mechanical actuator controls aircraft altitude, position, landing, takeoff, etc. It is an important part of a aircraft. Aircraft maneuvering causes vibrations to electro-mechanical actuator. Vibrations may result in structural fatigue. For that reason, it is necessary to analyze the system structural safety. In order to analyze the system structural safety. It is needed reasonable finite element model and structural response stress closed to real value. In this paper, analytic model is derived by using the simplified finite element model, and damping ratio which is closely related to response stress is derived by using modal test. So, we developed analytic model in less than 10 % error rate, compared with modal test. Vibration response stress close to real value was estimated from analytic model modified with modal experimental damping ratio. Estimation method for damping ratio with empirical formula was suggested partly. Finally, It was proved that electro-mechanical actuator had reasonable structure margin of safety at environmental random $3{\sigma}$ stress during life cycle.

Federated Information Mode-Matched Filters in ACC Environment

  • Kim Yong-Shik;Hong Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.173-182
    • /
    • 2005
  • In this paper, a target tracking algorithm for tracking maneuvering vehicles is presented. The overall algorithm belongs to the category of an interacting multiple-model (IMM) algorithm used to detect multiple targets using fused information from multiple sensors. First, two kinematic models are derived: a constant velocity model for linear motions, and a constant-speed turn model for curvilinear motions. Fpr the constant-speed turn model, a nonlinear information filter is used in place of the extended Kalman filter. Being equivalent to the Kalman filter (KF) algebraically, the information filter is extended to N-sensor distributed dynamic systems. The model-matched filter used in multi-sensor environments takes the form of a federated nonlinear information filter. In multi-sensor environments, the information-based filter is easier to decentralize, initialize, and fuse than a KF-based filter. In this paper, the structural features and information sharing principle of the federated information filter are discussed. The performance of the suggested algorithm using a Monte Carlo simulation under the two patterns is evaluated.

Shape Optimization of Metal Forming and Forging Products using the Stress Equivalent Static Loads Calculated from a Virtual Model (가상모델로부터 산출된 응력 등가정하중을 이용한 금속 성형품 및 단조품의 형상최적설계)

  • Jang, Hwan-Hak;Jeong, Seong-Beom;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1361-1370
    • /
    • 2012
  • A shape optimization is proposed to obtain the desired final shape of forming and forging products in the manufacturing process. The final shape of a forming product depends on the shape parameters of the initial blank shape. The final shape of a forging product depends on the shape parameters of the billet shape. Shape optimization can be used to determine the shape of the blank and billet to obtain the appropriate final forming and forging products. The equivalent static loads method for non linear static response structural optimization (ESLSO) is used to perform metal forming and forging optimization since nonlinear dynamic analysis is required. Stress equivalent static loads (stress ESLs) are newly defined using a virtual model by redefining the value of the material properties. The examples in this paper show that optimization using the stress ESLs is quite useful and the final shapes of a forming and forging products are identical to the desired shapes.

Dynamic Aeroelastic Characteristics of an All-Movable Canard with Oscillating Flap Used in UAV (플랩이 있는 무인기 전운동 카나드의 동적공탄성 특성)

  • Kim, Dong-Hyun;Koo, Kyo-Nam;Lee, In;Kim, Sung-Jun;Kim, Sung-Chan;Lee, Jung-Jin;Choi, Ik-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.56-63
    • /
    • 2004
  • In this study, dynamic aeroelastic analyses of the canard with oscillating flap are conducted considering the effect of aerodynamic compressibility. The canard model considered herein is an all-movable type with a pitching axis on a canard-rotor-wing aircraft which was considered as one of the major UAV candidates under developing in Korea. The equivalent structural model is constructed based on the initial design data by the Korea smart UAV development center. Both the frequency and the time-domain aeroelastic analyses have been applied to practically conduct parametric studies on the effects of equivalent torsional stiffness. In the case of all-movable control surface with oscillating flap, the equivalent rotational stiffness of the pitch axes are important design parameters. The parametric results for the aeroelastic instability are practically presented.

Structural analysis of a thick composite rotor hub system by using equivalent properties (등가 물성을 이용한 두꺼운 복합재 로터 허브 시스템의 구조 해석)

  • ;Yanti Rachmadini
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.7-14
    • /
    • 2003
  • Modeling of thick composite structures for finite element analysis is relatively complicated. 2-D plane elements may cause inaccurate result since the plane stress condition cannot be applicable in these structures. Therefore a 3-D modeling should be used. However, the difficulty to model all the layers with different material properties and ply orientation arise in this case. In this paper, an equivalent modeling is proposed and numerically tested for analysis of thick composite structures. By grouping layers with same material and ply orientation, number of elements through the thickness is remarkably reduced and still the result is close enough to the one from a detail finite element model. MSC/NASTRAN and PATRAN are used for the analysis. The proposed modeling technique has been applied for analysis of composite rotor hub system designed by Korea Aerospace Research Institute(KARI). Using the proposed equivalent modeling technique, we could conduct stress analysis for the hub system and check the safety factor of each part.

Study on Convergence Technique through Strength Analysis of Stabilizer Link by Type (스테빌라이저 링크의 종류별 강도 해석을 통한 융합 기술연구)

  • Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.1
    • /
    • pp.57-63
    • /
    • 2015
  • In this study, the lower arm is connected and fixed at the model of the automotive stabilizer link as the moment is applied. There are models of 1, 2 and 3 as a length control type, a general type and a single body type respectively. These models are investigated by performing the convergence technique through the design and the strength analysis with CATIA and ANSYS. As the maximum equivalent stress of model 3 has the least, model 3 can endure the highest load among three models. As the fatigue analysis, model 3 has the minimum blocks as the frequency of stress state, model 3 becomes also safest among three models. As models of 1, 2 are in the order of the next safety, the number of blocks becomes larger as the frequency of stress state and the instability becomes higher. And it is possible to be grafted onto the convergence technique at design and show the esthetic sense.

Structural damage detection using decentralized controller design method

  • Chen, Bilei;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.4 no.6
    • /
    • pp.779-794
    • /
    • 2008
  • Observer-based fault detection and isolation (FDI) filter design method is a model-based method. By carefully choosing the observer gain, the residual outputs can be projected onto different independent subspaces. Each subspace corresponds to the monitored structural element so that the projected residual will be nonzero when the associated structural element is damaged and zero when there is no damage. The key point of detection filter design is how to find an appropriate observer gain. This problem can be interpreted in a geometric framework and is found to be equivalent to the problem of finding a decentralized static output feedback gain. But, it is still a challenging task to find the decentralized controller by either analytical or numerical methods because its solution set is, generally, non-convex. In this paper, the concept of detection filter and iterative LMI technique for decentralized controller design are combined to develop an algorithm to compute the observer gain. It can be used to monitor structural element state: healthy or damaged. The simulation results show that the developed method can successfully identify structural damages.

Structural Analysis of Bike Handle Installed with Smart Phone Depository (스마트폰 거치대가 설치된 자전거 핸들의 구조 해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • This study investigates stress and deformation due to static and dynamic vibration analysis about various types of bike handles installed with smart phone depositories. When force is applied on the side of handle at the models of type 1, 2, 3 and 4, the maximum equivalent stress is highest at type 2. The stress or deformation becomes lowest among these 4 model types. At vibration analysis, type 1 becomes safest within the range of 500Hz and type 3 becomes stable within the range of 100Hz. The result of this study can be applied with the design of bike handle installed with smart phone depository. The damage or deformation due to vibration can be prevented when the bike falls down. This result can be widely utilized to investigate and predict the durability.