• Title/Summary/Keyword: equivalent series resistance

Search Result 92, Processing Time 0.02 seconds

Characteristics of Electrode Potential and AC Impendance of Perchlorate Ion-Selective Electrodes Based on Quaternary Phosphonium Salts in PVC Membranes (제4급 인산염을 이용한 과염소산 이온선택성 PVC막 전극의 전극전위와 AC 임피던스 특성)

  • 안형환
    • Membrane Journal
    • /
    • v.9 no.4
    • /
    • pp.230-239
    • /
    • 1999
  • Perchlorate ion-selective electrodes in PVC membranes that respond linearly to concentration 106 M were developed by incorporating the quaternary phosphonium salts as a canier. The effects of the chemical structure, the contents of canier, the kind of plasticizer and the membrane thickness on electrode characteristics such as the electrode slope, the linear respone range and the detection limit were studied. With this results, the detectable pH range, selectivity coefficients and AC impedance characteristics were compared and investigated. The perchlorate ion substituents of the quaternary phosphonium salts like tetraoctylphosphonium perchlorate (TOPP) , tetraphenylphosphonium perchlorate(TPPP), and tetrabutylphosphonium perchlorate(TBPP) as a canier were used. The electrode characteristics were better in the ascending order of TBPP < TPPP < TOPP, with the increase of carbon chain length of the alkyl group. Dioctylsebacate(OOS) was best as a plasticizer, the canier contents were better with 11.76 wt% and the optimum membrane thickness was 0.19 mm. Under the above condition, the electrode slope was 56.58 mV/$^P{ClO}_4$,the linear response range was $10^{-1}$\times$10^{-6}$ M, the detection limit was 9.66 x $10^{-7}$ M. The performance of electrode was better than Orion electrode. The electrode potential was stable within the pH range from 3 to 11. The order of the selectivity coefficients for the perchlorate ion was sol < F < Br < 1. With the result of impedance spectrum, it was found that the equivalent circuit for the electrode could be expressed by a series combination of solution resistance, parallel circuit consisting of the double layer capacitance and bulk resistance and Warburg impedance. And solution resistance was almost not appeared and Warburg impedance was highly appeared by diffusion. Then Warburg coefficient was 1.32$\times$$10^74 $\Omega$ $\cdot$ ${cm}^2/s^{1/2}$.

  • PDF

Monitoring of Concrete Deterioration Caused by Steel Corrosion using Electrochemical Impedance Spectroscopy(EIS) (EIS를 활용한 철근 부식에 따른 콘크리트 손상 모니터링)

  • Woo, Seong-Yeop;Kim, Je-Kyoung;Yee, Jurng-Jae;Kee, Seong-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.651-662
    • /
    • 2022
  • The electrochemical impedance spectroscopy(EIS) method was used to evaluate the concrete deterioration process related to chloride-induced steel corrosion with various corrosion levels(initiation, rust propagation and acceleration periods). The impressed current technique, with four total current levels of 0C, 13C, 65C and 130C, was used to accelerate steel corrosion in concrete cylinder samples with w/c ratio of 0.4, 0.5, and 0.6, immersed in a 0.5M NaCl solution. A series of EIS measurements was performed to monitor concrete deterioration during the accelerated corrosion test in this study. Some critical parameters of the equivalent circuit were obtained through the EIS analysis. It was observed that the charge transfer resistance(Rc) dropped sharply as the impressed current increased from 0C to 13C, indicating a value of approximately 10kΩcm2. However, the sensitivity of Rc significantly decreased when the impressed current was further increased from 13C to 130C after corrosion of steel had been initiated. Meanwhile, the double-layer capacitance value(Cdl) linearly increased from 50×10-6μF/cm2 to 250×10-6μF/cm2 as the impressed current in creased from 0C to 130C. The results in this study showed that monitoring Cdl is an effective measurement parameter for evaluating the progress of internal concrete damages(de-bonding between steel and concrete, micro-cracks, and surface-breaking cracks) induced by steel corrosion. The findings of this study provide a fundamental basis for developing an embedded sensor and signal interpretation method for monitoring concrete deterioration due to steel corrosion at various corrosion levels.