• 제목/요약/키워드: equivalent linearization method

검색결과 45건 처리시간 0.02초

On the limit cycles of aeroelastic systems with quadratic nonlinearities

  • Chen, Y.M.;Liu, J.K.
    • Structural Engineering and Mechanics
    • /
    • 제30권1호
    • /
    • pp.67-76
    • /
    • 2008
  • Limit cycle oscillations of a two-dimensional airfoil with quadratic and cubic pitching nonlinearities are investigated. The equivalent stiffness of the pitching stiffness is obtained by combining the linearization and harmonic balance method. With the equivalent stiffness, the equivalent linearization method for nonlinear flutter analysis is generalized to address aeroelastic system with quadratic nonlinearity. Numerical example shows that good approximation of the limit cycle can be obtained by the generalized method. Furthermore, the proposed method is capable of revealing the unsymmetry of the limit cycle; however the ordinary equivalent linearization method fails to do so.

6 자유도 HexaSlide 형 병렬기구의 선형화된 운동방정식 유도 (Derivation of Linearized Dynamic Equations of Motion for HexaSlide Type Parallel Manipulators)

  • 김종필;류제하
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.743-750
    • /
    • 2000
  • This paper presents an equivalent linearization method and application to the equations of motion of a 6 degree-of-freedom PRRS HexaSlide type parallel manipulators which are characterized as the architecture with constant link lengths that are attached to moving sliders on the ground and to a mobile platform. Since dynamic equations of parallel manipulators are complicated and highly nonlinear, control bandwidth, adjustable control gain as well as vibration characteristics cannot be easily found. The proposed equivalent linearization method can be applied over specified workspace as well as on a path of mobile platform. Through an equivalent linearization method, one can easily get a simple linear dynamic model. This linearized dynamic model may be utilized in a simplified computed torque control strategy.

  • PDF

비선형 불규칙 진동 보의 등가에너지법에 의한 선형화 (Linearization of Nonlinear Random Vibration Beam by Equivalent Energy Method)

  • 이신영
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.71-76
    • /
    • 2008
  • Nonlinear dynamic system under random excitation was analyzed by using stochastic method. A linearization method was used in order to linearize non-linear structural characteristics but the parametric excitation was used as it was given. An equivalent energy method which equalizes the expectation value of energy of the original nonlinear system and that of quasi-linearized system was proposed. Ito's differential rule was applied to obtain steady state moments. Quasi-linearization coefficients can be obtained the iterative calculation of linearization scheme and steady state moments. Monte Carlo simulation was used to verify the results of the proposed method. Nonlinear vibration of a slender beam was analyzed in this research. The analysis results were compared with Monte Carlo simulation result and showed good agreement. As the spectral density of the given excitation increased, the analysis results showed the better agreement with Monte Carlo simulation.

통계적 부분선형화 방법을 이용한 선체의 불규칙 횡동요 운동의 해석 (Analysis of Random Ship Rolling Using Partial Stochastic Linearization)

  • 김동수;이원경
    • 대한조선학회논문집
    • /
    • 제32권1호
    • /
    • pp.37-41
    • /
    • 1995
  • 불규칙 해상에서의 선체의 횡동요운동을 해석하기 위하여 통계적 부분선형화 방법을 사용하였다. 선형 1자유도계인 횡동요 운동 모델에 2차의 비선형 감쇠항과 3차 및 5차, 7차, 9차, 11차의 비선형 복원모멘트를 추가하였으며 불규칙 기진모멘트는 가우스 백색잡음으로 가정하였다. 이 해석 결과를 등가선형화 방법으로 구한결과와 비교한 결과 부분선형화 방법이 반드시 더 정확한 결과를 주는 것은 아니란 점을 확인하였다.

  • PDF

An equivalent linearization method for nonlinear systems under nonstationary random excitations using orthogonal functions

  • Younespour, Amir;Cheng, Shaohong;Ghaffarzadeh, Hosein
    • Structural Engineering and Mechanics
    • /
    • 제66권1호
    • /
    • pp.139-149
    • /
    • 2018
  • Many practical engineering problems are associated with nonlinear systems subjected to nonstationary random excitations. Equivalent linearization methods are commonly used to seek for approximate solutions to this kind of problems. Compared to various approaches developed in the frequency and mixed time-frequency domains, though directly solving the system equation of motion in the time domain would improve computation efficiency, only limited studies are available. Considering the fact that the orthogonal functions have been widely used to effectively improve the accuracy of the approximated responses and reduce the computational cost in various engineering applications, an orthogonal-function-based equivalent linearization method in the time domain has been proposed in the current paper for nonlinear systems subjected to nonstationary random excitations. In the numerical examples, the proposed approach is applied to a SDOF system with a set-up spring and a SDOF Duffing oscillator subjected to stationary and nonstationary excitations. In addition, its applicability to nonlinear MDOF systems is examined by a 3DOF Duffing system subjected to nonstationary excitation. Results show that the proposed method can accurately predict the nonlinear system response and the formulation of the proposed approach allows it to be capable of handling any general type of nonstationary random excitations, such as the seismic load.

Seismic Capacity Required for the Safety Limit Design of High-rise RC Buildings under Long-period Ground Motions in Osaka, JAPAN and its Estimation Based on the Equivalent Linearization Method

  • Sanada, Yasushi;Yoshida, Hiroki;Awano, Masayuki
    • 국제초고층학회논문집
    • /
    • 제9권4호
    • /
    • pp.315-323
    • /
    • 2020
  • In June 2016, the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) in Japan delivered countermeasures against long-period ground motions caused by strong earthquakes along the Nankai trough. However, the countermeasures do not cover high-rise buildings equal to or shorter than 60 m in height, which do not require earthquake response analyses in the seismic design. Hence, in the present study, earthquake response analyses for such high-rise reinforced concrete (RC) buildings were performed under artificial ground motions assumed in the OS1 and OS2 regions to determine the base shear coefficients that satisfy a given safety demand. Furthermore, the results from the earthquake response analyses were estimated by the authors' proposed method based on the equivalent linearization method, showing good agreement and inspiring suggestions for more accurate and simplified estimations.

등가선형화방법을 이용한 선체의 불규칙 횡동요 운동의 통계적 해석 (Statistical Analysis of Random Ship Rolling Using Equivalent Linearization Method)

  • 김동수;이원경
    • 대한조선학회논문집
    • /
    • 제30권4호
    • /
    • pp.39-45
    • /
    • 1993
  • 불규칙 해상에서의 선체의 횡동요운동을 해석하기 위하여 등가선형화방법을 사용 하였다. 일자 유도 선형 횡동요운동 모델에다가 2차의 비선형 감쇠항과 3차 및 5차의 비선형 복원 모멘트를 추가 하였으며 불규칙 기진 모멘트는 가우스 백색잡음으로 가정 하였다. 등가선형화 방법을 사용하여 예측한 응답의 통계적 특성을Simulation 결과와 비교 하였다.

  • PDF

랜덤파랑하중에 대한 Guyed Tower의 동적 거동해석 (Dynamic Analysis of Guyed Tower Subjected to Random Waves)

  • 유정선;윤정봉
    • 한국해양공학회지
    • /
    • 제1권1호
    • /
    • pp.57-64
    • /
    • 1987
  • Methods of nonlinear stochastic analysis of guyed towers are studied in this paper. Two different kinds of nonlinearities are considered. They are the nonlinear restoring force from the guying system and the nonlinear hydrodynamic force. Analyses are carried out mainly in the frequency domain using linearization techniques. Two methods for the linearization of the nonlinear stiffness are presented, in which the effects of the steady offset and the oscillating component of the structural motion can be adequately analyzed. those two methods are the equivalent linearization method and the average stiffness method. The linearization of the nonlinear drag force is also carried out considering the effect of steady current as well as oscillatory wave motions. Example analyses are performed for guyed tower in 300m water. Transfer functions and the expected maximum values of the deck displacement and the bending moment near the middle of the tower are calculated. Numerical results show that both of the frequency domain methods presented in this paper predict the responses of the sturcture very reasonably compared with those by the time integration method utilzing the random simulations wave particla motions.

  • PDF

A stochastic adaptive pushover procedure for seismic assessment of buildings

  • Jafari, Mohammad;Soltani, Masoud
    • Earthquakes and Structures
    • /
    • 제14권5호
    • /
    • pp.477-492
    • /
    • 2018
  • Recently, the adaptive nonlinear static analysis method has been widely used in the field of performance based earthquake engineering. However, the proposed methods are almost deterministic and cannot directly consider the seismic record uncertainties. In the current study an innovative Stochastic Adaptive Pushover Analysis, called "SAPA", based on equivalent hysteresis system responses is developed to consider the earthquake record to record uncertainties. The methodology offers a direct stochastic analysis which estimates the seismic demands of the structure in a probabilistic manner. In this procedure by using a stochastic linearization technique in each step, the equivalent hysteresis system is analyzed and the probabilistic characteristics of the result are obtained by which the lateral force pattern is extracted and the actual structure is pushed. To compare the results, three different types of analysis have been considered; conventional pushover methods, incremental dynamic analysis, IDA, and the SAPA method. The result shows an admirable accuracy in predicting the structure responses.

Nonlinear impact of negative stiffness dampers on stay cables

  • Shi, Xiang;Zhu, Songye
    • Structural Monitoring and Maintenance
    • /
    • 제5권1호
    • /
    • pp.15-38
    • /
    • 2018
  • Negative stiffness dampers (NSDs) have been proven an efficient solution to vibration control of stay cables. Although previous studies usually assumed a linear negative stiffness behavior of NSDs, many negative stiffness devices produce negative stiffness with nonlinear behavior. This paper systematically evaluates the impact of nonlinearity in negative stiffness on vibration control performance for stay cables. A linearization method based on energy equivalent principle is proposed, and subsequently, the impact of two types of nonlinear stiffness, namely, displacement hardening and softening stiffness, is evaluated. Through the Hilbert transform (HT) of free vibration responses, the effects of nonlinear stiffness of an NSD on the modal frequencies, damping ratios and frequency response functions of a stay cable is also investigated. The HT analysis results validate the accuracy of the linearization method.