• Title/Summary/Keyword: equivalent linear model

Search Result 340, Processing Time 0.026 seconds

Application of the Laplace transformation for the analysis of viscoelastic composite laminates based on equivalent single-layer theories

  • Sy, Ngoc Nguyen;Lee, Jaehun;Cho, Maenghyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.458-467
    • /
    • 2012
  • In this study, the linear viscoelastic response of a rectangular laminated plate is investigated. The viscoelastic properties, expressed by two basic spring-dashpot models, that is Kelvin and Maxwell models, is assumed in the range to investigate the influence of viscoelastic coefficients to mechanical behavior. In the present study, viscoelastic responses are performed for two popular equivalent single-layered theories, such as the first-order shear deformation theory (FSDT) and third-order shear deformation theory (TSDT). Compliance and relaxation modulus of time-dependent viscoelastic behavior are approximately determined by Prony series. The constitutive equation for linear viscoelastic material as the Boltzmann superposition integral equation is simplified by the convolution theorem of Laplace transformation to avoid direct time integration as well as to improve both accuracy and computational efficiency. The viscoelastic responses of composite laminates in the real time domain are obtained by applying the inverse Laplace transformation. The numerical results of viscoelastic phenomena such as creep, cyclic creep and recovery creep are presented.

The use of the semi-empirical method to establish a damping model for tire-soil system

  • Cuong, Do Minh;Ngoc, Nguyen Thi;Ran, Ma;Sihong, Zhu
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.395-406
    • /
    • 2018
  • This paper proposes a linear damping model of tire-soil system using semi-empirical method. A test rig was designed and developed to measure the vertical equivalent linear damping ratio of tire only and tire-soil system using Free-Vibration Logarithmic Decay Method. The test was performed with two kinds of tractor tires using a combination of five inflation pressure levels, two soil depths and four soil moisture contents in the paddy soil. The results revealed that the linear damping ratio of tires increased with decreasing tire inflation pressure; the linear damping ratio of tire-soil system also increased with decreasing tire inflation pressure and increased with the increasing soil depth (observed at 80 and 120 mm). It also increased with a relative increase of soil moisture contents (observed at 37.9%, 48.8%, 66.7% and 77.4%). The results also indicated that the damping ratio of tire-soil system was higher than that of tire only. A linear damping model of tire-soil system is proposed as a damping model in parallel which is established based on experimental results and vibration theory. This model will have a great significance in study of tractor vibration.

Structural Analysis using Equivalent Models of Active Control Devices (능동형 제진장치의 등가모델을 이용한 구조해석)

  • Park, Ji-Hun;Yun, Soo-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.339-346
    • /
    • 2012
  • In this paper, equivalent models for active control devices are proposed so that building structures with such devices are analyzed using commercial structural analysis programs for the assessment of the structural members under active vibration control. Equivalent link models represent active control device with a virtual linear spring and dashpot, and equivalent force models are control force history acting at the installation point in structural models. Active controllers are designed based on the reduced-order models for a vertical cantilever model and a high-rise building model and corresponding equivalent models are determined from control gain matrices. Based on acceleration, displacement and member force responses, the effectiveness of the equivalent models is verified. As a result, proposed equivalent models, of which equivalent link model showed better performance, appear to enable detailed investigation of structural behavior to the extent of member force level.

Seismic Response Evaluation of Seismically Isolated Nuclear Power Plant with Stiffness Center Change of Friction Pendulum Systems (마찰진자시스템의 강성중심 변화에 따른 면진된 원전 구조물의 지진응답평가)

  • Seok, Cheol-Geun;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.265-275
    • /
    • 2017
  • In order to improve the seismic performance of structures, friction pendulum system (FPS) is the most commonly used seismic isolation device in addition to lead rubber bearing (LRB) in high seismicity area. In a nuclear power plant (NPP) with a large self weight, it is necessary to install a large number of seismic isolation devices, and the position of the center of rigidity varies depending on the arrangement of the seismic isolation devices. Due to the increase in the eccentricity, which is the difference between the center of gravity of the nuclear structure and the center of stiffness of the seismic isolators, an excessive seismic response may occur which could not be considered at the design stage. Three different types of eccentricity models (CASE 1, CASE 2, and CASE 3) were used for seismic response evaluation of seismically isolated NPP due to the increase of eccentricity (0%, 5%, 10%, 15%). The analytical model of the seismic isolation system was compared using the equivalent linear model and the bilinear model. From the results of the seismic response of the seismically isolated NPP with increasing eccentricity, it can be observed that the effect of eccentricity on the seismic response for the equivalent linear model is larger than that for the bilinear model.

Numerical Prediction of Thermoacoustic Instability in Rijke Tube Using Non-linear Model for Heat Source (비선형 열원모델을 이용한 Rijke tube 내열음향 불안정 곡선의 수치예측기법)

  • Song, Woo-Seog;Lee, Seung-Bae
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2524-2529
    • /
    • 2008
  • The thermal system like a combustion chamber is believed to experience a significant instability problem with vibration in case that the thermal energy or the acoustic energy are transformed into a different form through a relevant path. This study deals with a numerically- predicted, Thermoacoustic instability in a Rijke tube by using a non-linear model for a heat source. The heating part where the energy transformation occurs actively is modeled after simulating two-dimensional cylinder case with constant surface temperature, and a nonlinear model that accounts for the transfer function of magnitude- and phase-characteristics is properly implemented so as to be dependent on the pulsation strength in the tube. The heat source model is observed to result in equivalent Thermoacoustic instabilities in the Rijke tube except low flow-rate cases in which the natural convection is dominant.

  • PDF

Development of Wear Model concerning the Depth Behaviour

  • Kim, Hyung-Kyu;Lee, Young-Ho
    • KSTLE International Journal
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Wear model for predicting the vehaviour of a depth is considered in this paper. It is deduced from the energy and volume based wear models such as the Archard equation and the workrate model. A new parameter of the equivalent depth ($D_e$= wear volume /worn area) is considered for the wear model of a depth prediction. A concenpt of a dissipated shear energy density is accommodated for in the suggested models. It is found that $D_e$ can distinguish the worn area shape. A cubic of $D_e$($D_e^3$) gives a better linear regression with the volume than that of the maximmum depth $D_{max}e$($D_{max}^3$) does. Both $D_{max}$ and $D_e$ are used for the presently suggested depth-based wear model. As a result, a wear depth profile can be simulated by a model using $D_{max}$. Wear resistance from the concern of an overall depth can be identified by the wear coefficient of the model using $D_e$.

Estimated Risk of Radiation Induced Contra Lateral Breast Cancer Following Chest Wall Irradiation by Conformal Wedge Field and Forward Intensity Modulated Radiotherapy Technique for Post-Mastectomy Breast Cancer Patients

  • Athiyaman, Hemalatha;M, Athiyaman;Chougule, Arun;Kumar, HS
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.12
    • /
    • pp.5107-5111
    • /
    • 2016
  • Background: Epidemiological studies have indicated an increasing incidence of radiation induced secondary cancer (SC) in breast cancer patients after radiotherapy (RT), most commonly in the contra-lateral breast (CLB). The present study was conducted to estimate the SC risk in the CLB following 3D conformal radiotherapy techniques (3DCRT) including wedge field and forward intensity modulated radiotherapy (fIMRT) based on the organ equivalent dose (OED). Material and Methods: RT plans treating the chest wall with conformal wedge field and fIMRT plans were created for 30 breast cancer patients. The risks of radiation induced cancer were estimated for the CLB using dose-response models: a linear model, a linear-plateau model and a bell-shaped model with full dose response accounting for fractionated RT on the basis of OED. Results: The plans were found to be ranked quite differently according to the choice of model; calculations based on a linear dose response model fIMRT predict statistically significant lower risk compared to the enhanced dynamic wedge (EDW) technique (p-0.0089) and a non-significant difference between fIMRT and physical wedge (PW) techniques (p-0.054). The widely used plateau dose response model based estimation showed significantly lower SC risk associated with fIMRT technique compared to both wedge field techniques (fIMRT vs EDW p-0.013, fIMRT vs PW p-0.04). The full dose response model showed a non-significant difference between all three techniques in the view of second CLB cancer. Finally the bell shaped model predicted interestingly that PW is associated with significantly higher risk compared to both fIMRT and EDW techniques (fIMRT vs PW p-0.0003, EDW vs PW p-0.0032). Conclusion: In conclusion, the SC risk estimations of the CLB revealed that there is a clear relation between risk associated with wedge field and fIMRT technique depending on the choice of model selected for risk comparison.

Soil interaction effects on the performance of compliant liquid column damper for seismic vibration control of short period structures

  • Ghosh, Ratan Kumar;Ghosh, Aparna Dey
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.89-105
    • /
    • 2008
  • The paper presents a study on the effects of soil-structure-interaction (SSI) on the performance of the compliant liquid column damper (CLCD) for the seismic vibration control of short period structures. The frequency-domain formulation for the input-output relation of a flexible-base structure with CLCD has been derived. The superstructure has been modeled as a linear, single degreeof-freedom (SDOF) system. The foundation has been considered to be attached to the underlying soil medium through linear springs and viscous dashpots, the properties of which have been represented by complex valued impedance functions. By using a standard equivalent linearization technique, the nonlinear orifice damping of the CLCD has been replaced by equivalent linear viscous damping. A numerical stochastic study has been carried out to study the functioning of the CLCD for varying degrees of SSI. Comparison of the damper performance when it is tuned to the fixed-base structural frequency and when tuned to the flexible-base structural frequency has been made. The effects of SSI on the optimal value of the orifice damping coefficient of the damper has also been studied. A more convenient approach for designing the damper while considering SSI, by using an established model of a replacement oscillator for the structure-soil system has also been presented. Finally, a simulation study, using a recorded accelerogram, has been carried out on the CLCD performance for the flexible-base structure.

Active vibration isolation of a hydraulic system using the hetero-synaptic neural network (헤테로-시넵틱 신경회로망을 이용한 유압시스템의 진동제어)

  • 정만실;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.273-277
    • /
    • 1995
  • Many hudraulic components have nonlinearities to some extent. These nonlinearities often cause the time delay, thus degrading the performance of the hydraulic control systems and making it difficult to modelthem. In this paper, a new vibration isolation control algorithm that eliminates the necessity of a sophiscated modeling of hydraulic system was proposed. The algotithm is a hybrid type control shecheme consisting of a linear controller and a hetero-synaptic neural network controller. Using this control scheme, simulations and experiments were performed for 1 DOF(Degree of freedom) and 2 DOF vibration isolation. The hybrid type control algorithm can isolate the base vibration signifcantly rather than linear control algorithm. And from the weights in hetero-synaptic neural network, we can get the 2nd equivalent differentialmodel of the hydraulic control system with on-line control operation. This equivalent model provides us with much information, such as stability and the characteristics of the control system.

  • PDF

Non-Linear Model of Voltage Source Power Converter and Tuning Current controller (전압형 전력 변환기 비선형 모델 및 전류제어기 조정)

  • Park, Sang-Young
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.144-146
    • /
    • 1998
  • In this study Dead time equivalent resistance of Voltage source power converter is very important in current controller design. And Non-linear Modeling method can be applied in Power converter analysis. Using Describing Function method and Non-linear Resistance Modeling. Voltage Source Power Converter Bode diagram and Current controller analysis method are more reality.

  • PDF