• Title/Summary/Keyword: equivalent depth

Search Result 348, Processing Time 0.025 seconds

Thermal buckling properties of zigzag single-walled carbon nanotubes using a refined nonlocal model

  • Semmah, Abdelwahed;Beg, O. Anwar;Mahmoud, S.R.;Heireche, Houari;Tounsi, Abdelouahed
    • Advances in materials Research
    • /
    • v.3 no.2
    • /
    • pp.77-89
    • /
    • 2014
  • In the present article, the thermal buckling of zigzag single-walled carbon nanotubes (SWCNTs) is studied using a nonlocal refined shear deformation beam theory and Von-Karman geometric nonlinearity. The model developed simulates both small scale effects and higher-order variation of transverse shear strain through the depth of the nanobeam. Furthermore the present formulation also accommodates stress-free boundary conditions on the top and bottom surfaces of the nanobeam. A shear correction factor, therefore, is not required. The equivalent Young's modulus and shear modulus for zigzag SWCNTs are derived using an energy-equivalent model. The present study illustrates that the thermal buckling properties of SWCNTs are strongly dependent on the scale effect and additionally on the chirality of zigzag carbon nanotube. Some illustrative examples are also presented to verify the present formulation and solutions. Good agreement is observed.

Effect of Input Soil Properties for Round Robin Test on Ground Response Analysis (지반 응답 해석 Round Robin Test의 입력 지반 물성에 따른 지반 응답 특성 영향 고찰)

  • Kim, Bong-Soo;Lee, Sei-Hyun;Choo, Yun-Wook;Park, Sung-Sik;Kim, Dong-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.305-316
    • /
    • 2007
  • Free field ground motion during earthquake is significantly affected by the local soil conditions and it is essential for the seismic design to perform the site specific ground response analysis. So, Round Robin Test (RRT) on ground response analysis was performed for three sites in Korea. A total of 12 teams presented the results of ground response analysis with used input soil properties based on own judgement. In this paper, the results of one dimensional equivalent linear analysis presented by 11 teams were compared to evaluate the effect of input soil properties on ground response analysis. Additionally, 4 influence factors on ground response analysis, that is shear wave velocity of soil layer, nonlinear dynamic deformational characteristics, bedrock depth and bedrock velocity were studied for assumed simple soil conditions.

  • PDF

Analytical methods for determination of double-K fracture parameters of concrete

  • Kumar, Shailendra;Pandey, Shashi Ranjan;Srivastava, A.K.L.
    • Advances in concrete construction
    • /
    • v.1 no.4
    • /
    • pp.319-340
    • /
    • 2013
  • This paper presents a comparative study on the double-K fracture parameters of concrete obtained using four existing analytical methods such as Gauss-Chebyshev integral method, simplified Green's function method, weight function method and simplified equivalent cohesive force method. Two specimen geometries: three point bend test and compact tension specimen for sizes 100-500 mm at initial notch length to depth ratios 0.25 and 0.4 are used for the comparative study. The required input parameters for determining the double-K fracture parameters are derived from the developed fictitious crack model. It is found that the cohesive toughness and initial cracking toughness determined using weight function method and simplified equivalent cohesive force method agree well with those obtained using Gauss-Chebyshev integral method whereas these fracture parameters determined using simplified Green's function method deviates more than by 11% and 20% respectively as compared with those obtained using Gauss-Chebyshev integral method. It is also shown that all the fracture parameters related with double-K model are size dependent.

A Study on Displacement Effect of Different Foundation using Concrete and Rubble (콘크리트, 잡석에 의한 이질기초 치환효과에 관한 연구)

  • Lim, Hae-Sik;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.2 no.2
    • /
    • pp.189-194
    • /
    • 2011
  • To reinforce bearing capacity-changed section or different foundation in the same building, empirical or simple tools have been used. To solve this problem, we suggest the analytical solution that can evaluate and reinforce the stability of foundation. To estimate the effect of reinforcement by replacement in different foundation, soil stiffness evaluation method taking into account the influence factor with respect to depth beneath the foundation need to be applied. In this paper, graphs and relevant formulae are suggested to calculate equivalent soil reaction coefficient showing the effect of reinforcement by crushed stone and lean concrete replacement.

An Artificial Inclusion Seeding Methodology for Fatigue Design of Aerospace Ti Castings (인공개재물 이식법을 통한 항공기용 티타늄 주물의 피로설계)

  • Paul, L. Ret;Park, Yong-Kuk;Kim, Jin-Gon
    • Journal of Korea Foundry Society
    • /
    • v.26 no.4
    • /
    • pp.184-190
    • /
    • 2006
  • Presence of inclusions in Ti castings imparts detrimental effects on the mechanical performance of castings. However, actual inclusions do not occur very frequently and they are difficult to locate. As a result, acquirement of specimens for mechanical tests and thus in-depth research of the adverse influence of inclusions are challenging. To address this problem, artificial inclusion seeding methodology is developed to emulate actual inclusions in Ti investment castings. Firstly, to validate that this new methodology does not result in inherent mechanical property degradation, Ti specimens with machined, backfilled and HIPed holes are produced and compared to control (unaltered), cast Ti material. Fatigue test results indicate that this 'machine-and-HIP methodology without seeding' does not result in any fundamental mechanical property alteration, which would bias ensuing comparative results. Secondly, based on this result, validation of the artificially seeded inclusions being equivalent to 'as cast' inclusions is performed by comparing their fatigue behaviors. Test specimens created by the novel artificial inclusion seeding methodology are equivalent to Ti casting specimens containing actual cast-in inclusions, and an adverse effect of inclusions in investment castings is confirmed.

A new hierarchic degenerated shell element for geometrically non-linear analysis of composite laminated square and skew plates

  • Woo, Kwang-Sung;Park, Jin-Hwan;Hong, Chong-Hyun
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.751-766
    • /
    • 2004
  • This paper extends the use of the hierarchic degenerated shell element to geometric non-linear analysis of composite laminated skew plates by the p-version of the finite element method. For the geometric non-linear analysis, the total Lagrangian formulation is adopted with moderately large displacement and small strain being accounted for in the sense of von Karman hypothesis. The present model is based on equivalent-single layer laminate theory with the first order shear deformation including a shear correction factor of 5/6. The integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. A wide variety of linear and non-linear results obtained by the p-version finite element model are presented for the laminated skew plates as well as laminated square plates. A numerical analysis is made to illustrate the influence of the geometric non-linear effect on the transverse deflections and the stresses with respect to width/depth ratio (a/h), skew angle (${\beta}$), and stacking sequence of layers. The present results are in good agreement with the results in literatures.

A Study on the Effect of Delta-V Based on Vehicle Damages and Injuries Subjected by Rear-End Collisions (후미추돌사고의 유효충돌속도가 차량손상 및 승차자 상해에 미치는 영향에 관한 연구)

  • Kang, Sung-Mo;Ahn, Byung-Joon
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.72-80
    • /
    • 2008
  • In a case of an automobile collision, vehicle damage and injury of the driver and the passenger occur. The scale of the collision which is effected by the extent of vehicle damage and the injury of the passenger, depends on the delta-V. Based on the photograph interpretation o the actual case of accidents in the Seoul and the Incheon area, this study measured the depth of crush and calculated the delta-V. Through verifying the correlation of the depth of crush and the change of velocity, relative equation was evaluated and compared with the prior study results to prove that they are almost identical. Thus, the depth of crush can be used as an index of the degree of impact, which can be utilized as the change of velocity to evaluate the level of injury done to the passengers. However, the period of hospitalization and diagnostics claimed by the injured proves to have no correlation with the delta-V and the extent of vehicle damage, this is due to the non-objective way of diagnosis and the anamnesis of the injured. This study established the absolute limit harmlessness and the choosing limit harmlessness, allowing the appraisal for Yes or No of the injury or the harmlessness based on the prior studies. Moreover, utilizing the relative equation formed between the depth of crush and the delta-V, each case of collision was compared and evaluated in comparison to the limit harmlessness to prove that the 90.4% of the so-called 'claiming-to-be-injured' were exaggerating or fabricating.

Nonlinearity effect on the dynamic behavior of the clayey basin edge

  • Hadi Khanbabazadeh
    • Geomechanics and Engineering
    • /
    • v.36 no.4
    • /
    • pp.367-380
    • /
    • 2024
  • Investigations has shown that the correct estimation of the effective amplification period is as important as the amplification value itself. It gets more important in 2D basins. This study presents a quantitative coefficient for consideration of the nonlinearity effect in terms of amplification value and the shift in its period which is missing or ineffectively considered in the previous studies. To attain this goal, by the application of a time domain fully nonlinear method, the deviation of the more common equivalent linear results from the basin nonlinear behavior under strong ground motions is investigated quantitatively. Also, despite the increase in the damping ratio, the possibility of the increase in the amplification due to the increase in motion strength is shown. To make the results useful in engineering practice, by introducing nonlinearity ratio, the effect of the nonlinearity is quantitatively estimated for two soft and stiff clayey basins with three different depths under a set of motions scaled to two target spectrum. Results show that at the 100 m depth soft clayey basin, while the nonlinearity ratio shows a 35% deviation at the basin edge part under DD1 motion level, its effect moves to the central part with 20% effect under DD3 motion level. By the increase in depth to 150 m, the results show a decrease in the overall effect of the nonlinear behavior for both clay types. At this depth, the nonlinearity ratio gives a 30% and 17% difference on a limited distance from outcrop at the soft clayey basin under DD1 and DD3 motion levels, respectively. At the 30 m depth basins, the nonlinearity ratio shows up to 25% difference for different cases. The presented ratio would be introduced as nonlinearity coefficients for consideration of the nonlinearity effects in the codes. The presented quantitative margins will help the designer to have a better understanding of the amplification period change because of nonlinearity over 2D basin surface.

Development of 2.5D Photon Dose Calculation Algorithm (2.5D 광자선 선량계산 알고리즘 개발)

  • 조병철;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.103-114
    • /
    • 1999
  • In this study, as a preliminary study for developing a full 3D photon dose calculation algorithm, We developed 2.5D photon dose calculation algorithm by extending 2D calculation algorithm to allow non-coplanar configurations of photon beams. For this purpose, we defined the 3d patient coordinate system and the 3d beam coordinate system, which are appropriate to 3d treatment planning and dose calculation. and then, calculate a transformation matrix between them. For dose calculation, we extended 2d "Clarkson-Cunningham" model to 3d one, which can calculate wedge fields as well as regular and irregular fields on arbitrary plane. The simple Batho's power-law method was implemented as an inhomogeneity correction. We evaluated the accuracy of our dose model following procedures of AAPM TG#23; radiation treatment planning dosimetry verifications for 4MV of Varian Clinac-4. As results, PDDs (percent depth dose) of cubic fields, the accuracy of calculation are within 1% except buildup region, and $\pm$3% for irregular fields and wedge fields. And for 45$^{\circ}$ oblique incident beam, the deviations between measurements and calculations are within $\pm$4%. In the case of inhomogeneity correction, the calculation underestimate 7% at the lung/water boundary and overestimate 3% at the bone/water boundary. At the conclusions, we found out our model can predict dose with 5% accuracy at the general condition. we expect our model can be used as a tool for educational and research purpose.. purpose..

  • PDF

Analysis Technique on Time-dependent PDF (Probability of Durability Failure) Considering Equivalent Surface Chloride Content (균등 표면 염화물량을 고려한 시간 의존적 내구적 파괴확률 해석기법)

  • Lee, Hack-Soo;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.46-52
    • /
    • 2017
  • Recently durability design based on deterministic or probabilistic method has been attempted since service life evaluation in RC(Reinforced Concrete) structure exposed to chloride attack is important. The deterministic durability design contains a reasonable method with time effect on surface chloride content and diffusion coefficient, however the probabilistic design procedure has no consideration of time effect on both. In the paper, a technique on PDF(Probability of Durability Failure) evaluation is proposed considering time effect on diffusion and surface chloride content through equivalent surface chloride content which has same induced chloride content within a given period and cover depth. With varying period to built-up from 10 to 30 years and maximum surface chloride content from $5.0kg/m^3$ to $10.0kg/m^3$, the changing PDF and the related service life are derived. The proposed method can be reasonably applied to actual durability design with preventing conservative design parameters and considering the same analysis conditions of the deterministic method.