• 제목/요약/키워드: equivalent damping ratio

검색결과 148건 처리시간 0.03초

An experimental study of vibration control of wind-excited high-rise buildings using particle tuned mass dampers

  • Lu, Zheng;Wang, Dianchao;Masri, Sami F.;Lu, Xilin
    • Smart Structures and Systems
    • /
    • 제18권1호
    • /
    • pp.93-115
    • /
    • 2016
  • A particle tuned mass damper (PTMD) system is the combination of a traditional tuned mass damper (TMD) and a particle damper (PD). This paper presents the results of an experimental and analytical study of the damping performance of a PTMD attached to the top of a benchmark model under wind load excitation. The length ratio of the test model is 1:200. The vibration reduction laws of the system were explored by changing some system parameters (including the particle material, total auxiliary mass ratio, the mass ratio between container and particles, the suspending length, and wind velocity). An appropriate analytical solution based on the concept of an equivalent single-unit impact damper is presented. Comparison between the experimental and analytical results shows that, with the proper use of the equivalent method, reasonably accurate estimates of the dynamic response of a primary system under wind load excitation can be obtained. The experimental and simulation results show the robustness of the new damper and indicate that the damping performance can be improved by controlling the particle density, increasing the amount of particles, and aggravating the impact of particles etc.

Design formulas for vibration control of taut cables using passive MR dampers

  • Duan, Yuanfeng;Ni, Yi-Qing;Zhang, Hongmei;Spencer, Billie.F. Jr.;Ko, Jan-Ming;Fang, Yi
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.521-536
    • /
    • 2019
  • Using magnetorheological (MR) dampers in multiswitch open-loop control mode has been shown to be cost-effective for cable vibration mitigation. In this paper, a method for analyzing the damping performance of taut cables incorporating MR dampers in open-loop control mode is developed considering the effects of damping coefficient, damper stiffness, damper mass, and stiffness of the damper support. Making use of a three-element model of MR dampers and complex modal analysis, both numerical and asymptotic solutions are obtained. An analytical expression is obtained from the asymptotic solution to evaluate the equivalent damping ratio of the cable-damper system in the open-loop control mode. The individual and combined effects of the damping coefficient, damper stiffness, damper mass and stiffness of damper support on vibration control effectiveness are investigated in detail. The main thrust of the present study is to derive a general formula explicitly relating the normalized system damping ratio and the normalized damper parameters in consideration of all concerned effects, which can be easily used for the design of MR dampers to achieve optimal open-loop vibration control of taut cables.

Equivalent linear and bounding analyses of bilinear hysteretic isolation systems

  • Wang, Shiang-Jung;Lee, Hsueh-Wen;Yu, Chung-Han;Yang, Cho-Yen;Lin, Wang-Chuen
    • Earthquakes and Structures
    • /
    • 제19권5호
    • /
    • pp.395-409
    • /
    • 2020
  • With verifications through many relevant researches in the past few decades, adopting the equivalent lateral force procedure for designing seismically isolated structures as a preliminary or even final design approach has become considerably mature and publicly acceptable, especially for seismic isolation systems that mechanically exhibit bilinear hysteretic behavior. During the design procedure, in addition to a given seismic demand, structural designers still need to previously determine three parameters, such as mechanical properties of seismic isolation systems or design parameters and performance indices of seismically isolated structures. However, an arbitrary or improper selection of given parameters might cause diverse or even unacceptable design results, thus troubling structural designers very much. In this study, first, based on the criterion that at least either two design parameters or two performance indices of seismically isolated structures are decided previously, the rationality and applicability of design results obtained from different conditions are examined. Moreover, to consider variations of design parameters of seismically isolated structures attributed to uncertainties of mechanical properties of seismic isolation systems, one of the conditions is adopted to perform bounding analysis for seismic isolation design. The analysis results indicate that with a reasonable equivalent damping ratio designed, considering a specific variation for two design parameters (the effective stiffness and equivalent damping ratio) could present more conservative bounding design results (in terms of isolation displacement and acceleration transmissibility) than considering the same variation but for two mechanical properties (the characteristic strength and post-yield stiffness).

Experimental and analytical investigations on seismic behavior of ductile steel knee braced frames

  • Zahrai, Seyed Mehdi;Jalali, Meysam
    • Steel and Composite Structures
    • /
    • 제16권1호
    • /
    • pp.1-21
    • /
    • 2014
  • Knee Braced Frame (KBF) is a special form of ductile eccentrically braced frame having a diagonal brace connected to a knee element, as a hysteretic damper, instead of beam-column joint. This paper first presents an experimental investigation on cyclic performance of two knee braced single span one-story frame specimens. The general test arrangement, specimen details, and most relevant results (failure modes and hysteretic curves) are explained. Some indexes to assess the seismic performance of KBFs, including ductility; response reduction factor and energy dissipation capabilities are also subsequently discussed. Experimental results indicate that the maximum equivalent damping ratios achieved by test frames are 21.8 and 23% for the specimens, prior to failure. Finally, a simplified analytical model is derived to predict the bilinear behavior of the KBFs. Acceptable conformity between analytical and experimental results proves the accuracy of the proposed model.

보행하중을 받는 건축물 바닥판의 진동해석 (Vibration Analysis of Building Floor Subjected to Walking Loads)

  • 김기철;이동근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.414-421
    • /
    • 2001
  • Recently, the damping effect of building structures are greatly reduced because the use of non-structures members as like curtain wall are decreased and large open space are in need for the service of buildings. Assembly and office buildings with a lower natural frequency have a higher possibility of experiencing excessive vibration induced by human activities as like jumping, running and walking. These excessive vibration make the occupants uncomfortable and the serviceability deterioration. The common method of application of walking loads for the vibration analysis of structures subjected to walking loads is to inflict a series unit walking load and a periodic function at a node. But this method could not consider the moving effect of walking. In this study, natural frequency and damping ratio of plate structure are evaluated by heel drop tests. And new application of equivalent walking loads are introduced for vibration analysis of real slab system subjected to walking loads. The response obtained from the numerical analysis are compared well to the results measured by experimental tests. It is possible to efficiently analyze the vibration of floor which is subjected to walking loads by applying equivalent walking loads.

  • PDF

전산플랫폼을 이용한 초고층구조물의 감쇠장치 최적화 설계 (Optimization Design of Damping Devices for a Super-Tall Building Using Computational Platform)

  • 정보라;이상현;정란;최현철
    • 한국전산구조공학회논문집
    • /
    • 제28권2호
    • /
    • pp.145-152
    • /
    • 2015
  • 본 연구에서는 파라매트릭 모델링 기법을 통해 다양한 대안을 고려할 수 있도록 개발된 StrAuto(이하 전산플랫폼)을 이용하여 감쇠장치에 따른 감쇠비 증가 효과와 풍하중 저감효과를 평가하였다. 비정형 초고층구조물의 수많은 구조시스템 대안 선정을 지원하는 전산플랫폼은 설계자 또는 엔지니어에게 초기 대안을 결정하는데 있어 유용한 도구가 된다. 감쇠장치의 용량 및 추가 요구감쇠비의 크기를 산정하는 과정에서 중요한 원 구조물의 감쇠비에 대한 추정은 풍하중에 대한 실계측 자료를 기반으로 수행된 국내외 관련 연구의 결과를 사용하였다. 감쇠장치는 층간 설치형 수동형 감쇠장치와 질량형 능동형 감쇠장치 두 가지 유형을 고려하였다. 감쇠장치에 의해 추가되는 감쇠비는 FEMA에서 제안한 식을 이용하여 등가 정적 해석을 수행하여 산정하였다. 전산 플랫폼 내부에 감쇠장치의 용량을 최적화하는 알고리즘을 내장함으로써 최적의 감쇠장치 설계안을 자동적으로 도출할 수 있다. 감쇠장치 설치에 따른 물량저감 효과는 풍하중 저감계수로 평가될 수 있으며, 455m 높이의 초고층구조물을 대상으로 제안한 방법의 유효성을 검증하였다. 제안한 방법을 사용하여 비선형 시간이력 해석을 통해 얻어진 지붕층 변위와 층별 전단력을 근사적으로 추정할 수 있음을 확인하였다.

저경도 고무받침의 특성에 관한 실험적 연구 (Experimental Study on Characteristics of Low Hardness Rubber Bearing)

  • 정길영;하동호;박건록;권형오
    • 한국지진공학회논문집
    • /
    • 제6권4호
    • /
    • pp.39-49
    • /
    • 2002
  • 본 연구에서는 저경도 고무받침 시험체의 다양한 특성실험을 통하여 저경도 고무받침의 특성을 파악하였다. 고무받침의 파악하고자 하는 특성은 변위 의존성, 반복재하특성, 진동수 의존성, 면압 의존성, 온도 의존성, 극한전단특성, 수직강성 및 전단변형능력 등이다. 특성실험결과, 저경도 고무받침의 특성치는 변위와 면압의 영향을 크게 받는 것으로 나타났으며, 진동수가 증가할수록 유효강성과 등가감쇠비가 조금 증가하며, 반복재하의 영향을 거의 받지 않았다. 그리고 대변형에 의해 변형경화 영역을 경험한 고무받침은 전단탄성계수가 저하되나, 시간이 경과하면서 일부 회복됨을 확인하였다. 끝으로, 전단파괴실험을 수행하였으며, 축소 시험체의 경우에 전단파괴가 전단변형률 490% 근처에서 진행되었고 실물의 경우에는 430%에서 진행되었다

흙의 비선형 모델을 이용한 감쇠비 산정 및 비교 (Calculation of Damping Ratio Using Non-Linear Soil Models and Comparison between Measured and Predicted Data)

  • 이형규;배윤신
    • 한국지반신소재학회논문집
    • /
    • 제10권2호
    • /
    • pp.21-28
    • /
    • 2011
  • 지반의 대표적 동적 물성치중 하나인 감쇠비를 구하기 위한 여러 이론적 비선형모델이 개발되어 왔으나 실제 측정된 감쇠비를 정확히 예측하기는 불가능하다. 공진주/비틂전단 시험기는 미소변형율에서 중간변형율까지 흙의 동적 거동을 표현하는데 자주 이용되어 왔다. 공진주/비틂전단 시험기의 단점중의 하나는 측정된 감쇠비에 상응하는 변형율 산정법이 복잡하다는 것이다. 이를 해결하기 위하여 수정쌍곡선 모델과 Ramberg-Osgood모델을 사용하여 수정등가반경법을 도입하여 보다 정확한 변형율을 계산하였다. 유타지역에서 채취된 시료를 이용하여 공진주/비틂전단 시험기로 측정된 비틂력-비틂각을 이론적 비틂력-비틂각과 비교하고, 맞춤곡선법을 사용하여 각 비선형모델의 매개변수를 구하였으며 적합모델별 매개변수에서의 등가반경을 산정하였다.

Vibration behavior of large span composite steel bar truss-reinforced concrete floor due to human activity

  • Cao, Liang;Li, Jiang;Zheng, Xing;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • 제37권4호
    • /
    • pp.391-404
    • /
    • 2020
  • Human-induced vibration could present a serious serviceability problem for large-span and/or lightweight floors using the high-strength material. This paper presents the results of heel-drop, jumping, and walking tests on a large-span composite steel rebar truss-reinforced concrete (CSBTRC) floor. The effects of human activities on the floor vibration behavior were investigated considering the parameters of peak acceleration, root-mean-square acceleration, maximum transient vibration value (MTVV), fundamental frequency, and damping ratio. The measured field test data were validated with the finite element and theoretical analysis results. A comprehensive comparison between the test results and current design codes was carried out. Based on the classical plate theory, a rational and simplified formula for determining the fundamental frequency for the CSBTRC floor is derived. Secondly, appropriate coefficients (βrp) correlating the MTVV with peak acceleration are suggested for heel-drop, jumping, and walking excitations. Lastly, the linear oscillator model (LOM) is adopted to establish the governing equations for the human-structure interaction (HSI). The dynamic characteristics of the LOM (sprung mass, equivalent stiffness, and equivalent damping ratio) are determined by comparing the theoretical and experimental acceleration responses. The HSI effect will increase the acceleration response.