• Title/Summary/Keyword: equilibrium modulus

Search Result 55, Processing Time 0.028 seconds

Topological Analysis on the Modulus and Network Structure of Miscible Polymer Blends

  • 손정모;박형석
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.169-180
    • /
    • 1995
  • A topological theory is introduced to extend Tsenoglou's theory to polymer blends having temporary and permanent networks composed of multicomponent polymers which have miscible and flexible chains. The topological theory may estimate the values of free elastic energy, the molecular weight between entanglements, and the equilibrium shear moduli, and it may establish more correctly the topological relations among these physical quantities. Through such introduction of the topological theory, there can be topologically analyzed the mixing law for the rubbery plateau modulus of a fluid polymer blend, and there can be considered the topological relationship to the equilibrium modulus of an interpenetrating polymer network containing trapped entanglements and dangling segments. The theoretically predictive values are compared and show good agreement with the experimental data for several miscible polymer blends.

Design Sensitivity Analysis of Coupled Thermo-elasticity Problems

  • Choi Jae-yeon;Cho Seonho
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.50-60
    • /
    • 2004
  • In this paper, a continuum-based design sensitivity analysis (DSA) method is developed for the weakly coupled thermo-elasticity problems. The temperature and displacement fields are described in a common domain. Boundary value problems such as an equilibrium equation and a heat conduction equation in steady state are considered. The direct differentiation method of continuum-based DSA is employed to enhance the efficiency and accuracy of sensitivity computation. We derive design sensitivity expressions with respect to thermal conductivity in heat conduction problem and Young's modulus in equilibrium equation. The sensitivities are evaluated using the finite element method. The obtained analytical sensitivities are compared with the finite differencing to yield very accurate results. Extensive developments of this method are useful and applicable for the optimal design problems incorporating welding and thermal deformation problems.

Investigation of Linear Viscoelastic Properties of Xanthan-Carob Mixture in Sol and Gel States

  • Yoon, Won-Byong;Gunasekaran, Sundaram
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.618-623
    • /
    • 2009
  • Synergistic interactions between xanthan (X) and carob (C) were investigated by studying the linear viscoelastic behavior of X, C, and X/C mixtures at sol and gel states. At the solution state, storage modulus (G') dominates the linear viscoelastic properties of X/C mixtures. The gelation temperature (52 to $57^{\circ}C$) was weakly dependent on the xanthan fraction (${\phi}x$) in the mixture. The ${\phi}x$ also had a strong effect on G' until ${\phi}x=0.5$. The elastic active network concentration (EANC) of X/C gels was estimated from the pseudo-equilibrium modulus. The EANC for systems with ${\phi}x=0.25$, 0.5, 0.75, and 1 at 1% total concentration was 2.3, 4.4, 4.1, and 0.32 (${\times}10^{-3}\;mol/m^3$), respectively. The maximum synergistic effect was observed at about ${\phi}x=0.5$. The G' at the transition state of X/C mixed gel was proportional to ${\omega}^{3/2}$ at ${\omega}$>${\omega}_{tr}$ (the onset transition frequency) compared to the theoretical limit of ${\omega}^{1/2}$.

Short- and long-term analyses of shear lag in RC box girders considering axial equilibrium

  • Xiang, Yiqiang;He, Xiaoyang
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.725-737
    • /
    • 2017
  • An analytical method considering axial equilibrium is proposed for the short- and long-term analyses of shear lag effect in reinforced concrete (RC) box girders. The axial equilibrium of box girders is taken into account by using an additional generalized displacement, referred to as the longitudinal displacement of the web. Three independent shear lag functions are introduced to describe different shear lag intensities of the top, bottom, and cantilever plates. The time-dependent material properties of the concrete are simulated by the age-adjusted effective modulus method (AEMM), while the reinforcement is assumed to behave in a linear-elastic fashion. The differential equations are derived based on the longitudinal displacement of the web, the vertical displacement of the cross section, and the shear lag functions of the flanges. The time-dependent expressions of the generalized displacements are then deduced for box girders subjected to uniformly distributed loads. The accuracy of the proposed method is validated against the finite element results regarding the short- and long-term responses of a simply-supported RC box girder. Furthermore, creep analyses considering and neglecting shrinkage are performed to quantify the time effects on the long-term behavior of a continuous RC box girder. The results show that the proposed method can well evaluate both the short- and long-term behavior of box girders, and that concrete shrinkage has a considerable impact on the concrete stresses and internal forces, while concrete creep can remarkably affect the long-term deflections.

Rheological Properties of Acorn Flour Gels by Stress Relaxation Test (응력완화 검사(stress relaxation test)에 의한 도토리묵의 물리적 특성)

  • 김영아;이혜수
    • Korean journal of food and cookery science
    • /
    • v.1 no.1
    • /
    • pp.53-56
    • /
    • 1985
  • The rheological models of acorn flour gels with different concentrations were investigated by stress relaxation test. The analysis of relaxation curves by successive residual method revealed that the rheological behavior of acorn flour gels could be expressed by the 7-element, generalized Maxwell model. The equilibrium modulus and modulus of elasticity increased by the increment of acorn flour concentration.

  • PDF

Finite Element Analysis of Flexural Composite Members Considering Early-Age Concrete Properties (콘크리트의 초기재령특성을 고려한 합성형 휨 부재의 유한요소 거동해석)

  • 강병수;주영태;신동훈;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.463-468
    • /
    • 2003
  • A finite element formulation to predict the flexural behavior of composite girder is presented in which the early-age properties of concrete are specified including maturing of elastic modulus, creep and shrinkage. The time dependent constitutive relation accounting for the early-age concrete properties is derived in an incremental format by expanding the total form of stress-strain relation by the first order Taylor series with respect to the reference time. The total potential energy of the flexural composite member is minimized to derive the time dependent finite element equilibrium equation. Numerical applications are made for the 3-span double composite steel box girders which is a composite bridge girder filled with concrete at the bottom of the steel box in the negative moment region. The numerical analysis with considering the variation of concrete elastic modulus are performed to investigate the effect of it on the early-age behavior of composite structures. The one dimensional finite element analysis results are compared with the analytical method based on the sectional analysis. Close agreement is observed among the two methods.

  • PDF

Buckling of a single-layered graphene sheet embedded in visco-Pasternak's medium via nonlocal first-order theory

  • Zenkour, Ashraf M.
    • Advances in nano research
    • /
    • v.4 no.4
    • /
    • pp.309-326
    • /
    • 2016
  • The buckling response of a single-layered graphene sheet (SLGS) embedded in visco-Pasternak's medium is presented. The nonlocal first-order shear deformation elasticity theory is used for this purpose. The visco-Pasternak's medium is considered by adding the damping effect to the usual foundation model which characterized by the linear Winkler's modulus and Pasternak's (shear) foundation modulus. The SLGS be subjected to distributive compressive in-plane edge forces per unit length. The governing equilibrium equations are obtained and solved for getting the critical buckling loads of simply-supported SLGSs. The effects of many parameters like nonlocal parameter, aspect ratio, Winkler-Pasternak's foundation, damping coefficient, and mode numbers on the buckling analysis of the SLGSs are investigated in detail. The present results are compared with the corresponding available in the literature. Additional results are tabulated and plotted for sensing the effect of all used parameters and to investigate the visco-Pasternak's parameters for future comparisons.

Electron Beam Modification of Dual Phase Filler: Surface Characteristics and its Influence on the Properties of Styrene-Butadiene Rubber Vulcanizates

  • Shanmugharaj A. M.
    • Rubber Technology
    • /
    • v.5 no.2
    • /
    • pp.94-103
    • /
    • 2004
  • The present work describes modification of dual phase filler by electron beam irradiation in presence of multifunctional acrylates like trimethylol propane triacrylate (TMPTA) or silane coupling agent like bis (3-triethoxysilylpropyltetrasulphide) and in-fluence of the modified fillers on the physical properties of styrene-butadiene rubber (SBR) vulcanizates. Modulus at 300 % elongation increases whereas the tensile strength decreases with increase in radiation dose for the dual phase filler loaded styrene-butadiene rubber vulcanizates (SBR). However, modulus and tensile strength significantly increase, which is more, pronounced at higher filler loadings for TMPTA modified dual phase filler loaded SBR. These changes in properties are explained by the equilibrium swelling data and Kraus plot interpreting the polymer-filler interaction. Electron beam modification of the filler results in a reduction of tan ${\delta}$ at $70^{\circ}C$, a parameter for rolling resistance and increase in tan ${\delta}$ at $0^{\circ}C$, a parameter for wet skid resistance of the SBR vulcanizates. Finally, the influence of modified fillers on the properties like abrasion resistance, tear strength and fatigue failure and the improvement in the properties have been explained in terms of polymer-filler interaction.

  • PDF

Nonlinear Viscoelastic Analysis of Reticulated Spatial Truss Composed of Composite Materials (복합재료 그물형 공간 트러스의 점탄성적 비선형 해석)

  • Han, Sung Cheon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.661-672
    • /
    • 2001
  • The present study is concerned with the arc-length method in the investigation of the large deflection behavior of spatial structures with composite materials. This study should be able to trace the main equilibrium path by automatically varying the arc-length size of individual solution steps with the variation of the curvature of the nonlinear equilibrium path. A quasi-elastic method is used for the solution for viscoelastic analysis of the reticulated spatial structures. Elastic modulus of composite materials is defined by micro mechanical materials modeling method and nonlinear equilibrium path is traced with various load types. To demonstrate the effectiveness of the present strategies, numerical examples of reticulated spatial truss is given and compared with solutions using other methods.

  • PDF

Fabrication and Characterization of Modified Poly(2-hydroxyethyl methacrylate)(PHEMA) Hydrogels by Thermal/Photo Polymerization

  • Lee, Minsu;Lee, Junghyun;Jang, Jihye;Nah, Changwoon;Huh, Yang-il
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.359-367
    • /
    • 2019
  • Poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels modified with various co-monomers, such as N-vinyl pyrrolidone (NVP), glycidyl methacrylate (GMA), and glycerol monomethacrylate (GMMA), were prepared to investigate the effect of adding a co-monomer on the water contents, surface wettability, and tensile modulus. These polymers were synthesized by thermal- and photo-polymerization in the presence of azobisisobutyronitrile (AIBN) and diphenyl(2,4,6-trimethylbenzoyl)-phosphineoxide (TPO) as the initiators. The characteristics of the hydrogels were analyzed via FTIR and UV/Vis spectroscopies, contact angle measurements, and tensile modulus measurements with UTM. Regarding the properties of water in the hydrogels, the ratio between free to bound water was investigated using differential scanning calorimetry (DSC). The effects of adding the co-monomers on the water content, surface wettability, and tensile modulus for soft contact lenses were also investigated. In the case of p(HEMA-co-NVP) hydrogels, the increase in the equilibrium water content (EWC) was primarily due to the increase in the bound water content. For p(HEMA-co-GMMA) hydrogels, an increase in free water content was the main reason for the increased EWC. In contrast, in the case of p(HEMA-co-GMA) hydrogels, a decrease in bound water content was observed to be the main factor that reduced the EWC. Photo-polymerized PHEMA hydrogels showed enhanced surface wettability and tensile modulus as compared to those produced via thermal polymerization.