• Title/Summary/Keyword: equilibrium isotherm

Search Result 366, Processing Time 0.027 seconds

Physicochemical Adsorption Characteristics of MTBE and Cadmium on Clay Minerals (점토광물에 대한 MTBE와 카드뮴의 물리화학적 흡착 특성)

  • Lim, Nam-Ho;Seo, Hyung-Joon;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.231-239
    • /
    • 2005
  • This study was performed to investigate adsorption characteristics of MTBE and Cd depending upon types of clay minerals md their physicochemical properties. The adsorption characteristics were examined by batch adsorption test on various experimental parameters such as adsorption time, ratio of solution to soil, concentration of contaminants, content of organic matter, pH, and zeta potential. The adsorption efficiency of MTBE or Cd for three types of clays decreased in response to the increase of the ratio of solution to soil whereas their adsorbed amounts increased. MTBE was greatly adsorbed in the decreasing order of vermiculite, bentonite, and CTAB-bentonite while Cd was adsorbed in the decreasing order of bentonite, vermiculite, and CTA-bentonite. An equilibrium isotherm for MTBE was well fitted to Freundlich plotting whereas that for Cd was closely corresponded to Langmuir isotherm. The adsorbed amount of MTBE on bentonite and vermiculite showed the maximum at 1% and 5% of humic acid, thereafter diminished while the adsorbed amount of MTBE on CTAB-bentonite increased in proportion to humic acid. Conversely, the adsorbed amount of Cd on the addition of humic acid continued to increase regardless of types of adsorbents. For all types of adsorbents, adsorbed quantity and adsorption efficiency of Cd have been coincidently increased at pH 8 and they were further enhanced at pH 10 showing 90% adsorption efficiency. Upon pH rose, the zeta potential on each adsorbent began to decrease, while increasing Cd concentration led to decline of zeta potential, which in turn ascribed to lowering dispersion stability that could consequently enhance adsorption capability.

The Langmuir Adsorption Isotherms of the Electroadsorbed Hydrogens at the Single Crystal Pt(100)/Aqueous Electrolyte Interfaces (단결정 Pt(100)/수용액 계면에서 전가흡착된 수소의 Langmuir흡착등온식)

  • Chun Jang Ho;Jeon Sang Kyoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.1
    • /
    • pp.14-20
    • /
    • 2001
  • The Langmuir adsorption isotherms of the under-potentially deposited hydrogen (UPD H) and the over-potentially deposited hydrogen (OPD H) at the single crystal Pt(100)/0.5 M $H_2SO_4$ and 0.5 M LiOH aqueous electrolyte interfaces have been studied using the phase-shift method. The phase-shift profile $({-\varphi}\;vs.\;E)$ for the optimum intermediate frequency can be used as a useful method to estimate the Langmuir adsorption isotherm $(\theta\;vs.\;E)$ at the interfaces. The equilibrium constant (K) for the OPD H and the standard free energy $({\Delta}G_{ads})$ of the OPD H at the Pt(100)/0.5M $H_2SO_4$ aqueous electrolyte interface are $1.5\times10^{-4}$ and 21.8 kJ/mol, respectively. At the Pt(100)/0.5 LiOH aqueous electrolyte interface, K transits from 1.9(UPD H) to $6.8\times10^{-6}$(OPD H) depending on the cathode potential (E) and vice versa. Similarly, ${\Delta}G_{ads}$ transits -1.6 kJ/mol (UPD H) to 29.5 kJ/mol (OPD H) depending on E and vice versa. The transition of K and ${\Delta}G_{ads}$ is attributed to the two distinct adsorption sites of the UPD H and OPD H on the Pt(100) surface. The UPD H and the OPD H at the Pt(100) interfaces are the independent processes depending on the H adsorption sites rather than the sequential processes for the cathodic $H_2$ evolution reactions.

Analysis on the Electrode Kinetic Parameters at the Pd/LiOH Electrolyte Interface using the Phase-shift Method (위상이동 방법에 의한 Pd/LiOH 전해질 계면의 전극속도론적 패러미터 해설)

  • Chun Jang Ho;Mun Kyeong Hyeon;Cho Sung Chil;Son Kwang Chul
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.70-74
    • /
    • 1999
  • The electrode kinetic parameters at the Pd/0.5 M LiOH electrolyte interface have been qualitatively studied using the phase-shift method. The phase shift $(\phi)$ depends on both the cathode potential (E>0) and frequency (f), and $\theta$ is inversely proportional to the fractional surface coverage $\theta$. At an intermediate frequency (10 Hz), the phase-shift profile $(\phi\;vs.\;E)$ can be related to the fractional surface coverage $(\theta\;vs.\;E)$. The phase-shift method can be used to estimate or plot the Frumkin adsorption isotherm. The rate (r) of change of the free energy of adsorption with $({\theta})$ is 22.3 kJ/mol. The equilibrium constant (K) for adsorption and the standard free energy $({\Delta}G_{\theta})$ of the adsorbed hydrogen atom $(H_{ads})$ are $3.7\times10^{-3}{\Delta}G_{\theta}>-8.4kJ/mol$, respectively. For 1$0.38>\theta>0$, the energy liberation or the exothermic reaction for hydrogen adsorption at the Pd cathode can be occurred. The electrode kinetic parameters $(r,\;K,\;{\Delta}G_{\theta}$ depend on the fractional surface coverage $({\theta})$ or the phase shift $(\phi)$.

Effects of Adsorption Sites of the Polycrystalline Ir Surface on Potentially Deposited H (수소 전착에 관한 다결정 Ir표면의 흡착부위 효과)

  • Chun Jang Ho;Mun Kyeong Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.144-149
    • /
    • 1999
  • The two distinct adsorption sites and transition between the under and over-potentially deposited hydrogen (UPD H and OPD H) on the polycrystalline iridium (poly-Ir) surface in the 0.2 M LiOH electrolyte have been studied using the phase-shift method. At the forward and backward scans, the UPD H peak occurs on the cyclic voltam-mogram. The transition region on the phase-shift profile or the Langmuir adsorption isotherm occurs at ca. -0.80 to -0.95 V vs. SCE. At the transition region (-0.80 to -0.95 V vs. SCE), the equilibrium constant (K) for H adsorption transits from $7.9\times10^{-2}\;to\;1.5\times10^{-4}$ and vice versa. Similarly, the standard free energy $({\Delta}G_{ads})$ of H adsorption transits from 6.3 to 21.8kJ/mol and vice versa. The UPD H and OPD H on the poly-Ir surface act as two distinguishable electroadsorbed H species. Both the UPD H peak and the transition region are attributed to the two distinct adsorption sites of the UPD H and OPD H on the poly-Ir surface.

The Removal Characteristics of Cs$^{+}$ and Co$^{++}$ from Aqueous Wastes by Ultrafiltration in Combination with Chemical Treatment Techniques(II) (화학처리와 한외여과막의 결합공정에 의한 Cs 및 Co의 제거특성 (II))

  • 이근우;정경환;김길청;김준형
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.56-64
    • /
    • 1996
  • The objective of this investigation is to establish the rejection characteristics of caesium and cobalt from radioactive liquid waste by chemical/ultrafiltration process. An extensive experimental investigation was conducted with inactive caesium and cobalt ions, utilizing ultrafiltration stirred cell. Caesium and cobalt could be effectively removed from waste solution using copper ferrocyanide and polyarcylic acid(PAA). The rejection dependence of the caesium was found to be a function of caesiun to potassium copper ferrocyanide feed molar ratio. The binding behavior of caesium on K$_2$Cu$_3$(Fe(CN)$\sub$6/)$_2$, particles was explained in terms of a Langmuir adsorption isotherm. When Cs/K$_2$Cu$_3$(Fe(CN)$\sub$6/)$_2$molar ratio was 1.5, the removal of caesium was the most efficient. The rejection efficiency of cobalt is dependent upon various parameters such as pH, cobalt concentration and PAA concentration. The rejection behavior of cobalt was explained in term of a equilibrium model taking into account the reaction between the ligand group, the proton and the cobalt ion. At the conditions of PAA/Co ratio of 2 and pH of 5.6, the removal of cobalt was over 90%. Also, the effect of chemical addition sequence for the simultaneously removal of caesiun and cobalt was discussed.

  • PDF

Ion Exchange of Copper from Sulphate Effluent using DOWEX G-26 (황산용액(黃酸溶液)으로부터 DOWEX G-26에 의한 구리의 회수(回收))

  • Nguyen, Nghiem Van;Lee, Jae-Chun;Jha, Manis Kumar;Kim, Min-Seuk;Jeong, Jin-Ki;Hwang, Taek-Sung
    • Resources Recycling
    • /
    • v.17 no.4
    • /
    • pp.37-46
    • /
    • 2008
  • In view of the increasing importance of the waste recycling to meet the strict environmental regulations, the present investigation reports an adsorption process using cationic exchanger DOWEX G-26 for the recovery of copper from the synthetic sulphate solutions containing copper 0.3 to 0.5 mg/ml, similar to the CMP waste effluent of electronic industry. Various process parameters viz. contact time, solution pH, resin dose, and A/R ratio for elution were investigated to recover copper from the effluents. Complete adsorption of copper from the solution was achieved at equilibrium pH 2.5 and aqueous I resin (A/R) ratio of 100 ml/g in 14 minutes contact time. The adsorption of copper on DOWEX G-26 resin was found to follow the Langmuir isotherm and second order reaction. The copper was eluted from loaded resin with dilute sulphuric acid to produce copper-enriched solution.

Studies on Food Preservation by Controlling Water Activity 1. Measurement of Sorption Isotherm of Dried Filefish Muscle by Equilibration in Dynamic Stream of Conditioned Air (식품보장과 수분활성에 관한 연구 1. 조절기류에 의한 건조말쥐치육의 등온흡습곡선의 측정)

  • HAN Bong-Ho;CHOI Soo-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.189-193
    • /
    • 1981
  • An apparatus for continuous measurements of sorption isotherm of dried food was manufactured to shorten the time required for equilibration. The apparatus was so designed that the temperature, air velocity and relative humidity in the experimental chamber could be controlled. The use of dynamic stream of conditioned air with a velocity of 0.2m/sec, instead of static atmosphere, allowed a faster equilibration of dried filefish muscle at $25^{\circ}C$. The mean time necessary for the equilibration of dried filefish muscle at the water activity of a given state to a higher water activity was about 45 hours. The monolayer moisture content of dried filefish muscle calculated from BET-equation was 0.092 kg water /kg dry matter at $25^{\circ}C$.

  • PDF

Study on Adsorption Kinetic Characteristics of Propineb Pesticide on Activated Carbon (활성탄에 대한 프로피네브 농약의 흡착동력학적 특성 연구)

  • Lee, Jong-Jib;Cho, Jung-Ho;Kim, Heung-Tae
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.346-352
    • /
    • 2011
  • The adsorption characteristics of propineb pesticide onto activated carbon has been investigated for the adsorption in aqueous solution with respect to initial concentration, contact time and temperature in batch experiment. The Langmuir and Freundlich adsorption models were applied to described the equilibrium isotherms and isotherm constants were also determined. The Freundlich model agrees with experimental data well. slope of isotherm line indicate that activated carbon could be employed as effective treatment for removal of propineb. The pseudo first order, pseudo second order kinetic models were use to describe the kinetic data and rate constants were evaluated. The adsorption process followed a pseudo second order model, and the adsorption rate constant($k_2$) decreased with increasing initial concentration of propineb. The activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption. The estimated values for change of free energy were -7.28, -8.27 and -11.66 kJ/mol over activated carbon at 298, 308 and 318 K, respectively. The results indicated toward a spontaneous process. The positive value for change of enthalpy, 54.46 kJ/mol, found that the adsorption of propineb on activated carbon is an endothermic process.

Electrochemical Characteristics of H Adsorption Sites at the Poly-Pt/LiOH Aqueous Electrolyte Interface (다결정 Pt/LiOH 수성 전해질 계면에서 수소 흡착부위의 전기화학적 특성)

  • Chun Jang Ho;Cho Chong Dug
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.213-217
    • /
    • 1999
  • The electrochemical characteristics of two distinct adsorption sites of H at the polycrystalline Pt/0.2 M LiOH aqueous electrolyte interface have been studied using the phase-shift method. At the forward and backward scans, the under-potentially deposited H (WD H) peak occurs on the cyclic voltammogram. The transition region on the phase-shift profile or the Langmuir adsorption isotherm occurs at ca. -0.66 to -0.96 V vs. SCE. At the transition region (ca. -0.66 to -0.96 V vs. SCE), the equilibrium constant (K) for H adsorption transits from 18.5 to $4.0\times10^{-5}$ and vice versa. Similarly, the standard free energy $({\Delta}G_{ads})$ of H adsorption transits from -7.2 to 25.1kJ/mol and vice versa. The under and over-potentially deposited H (UPD H and OPD H) on the poly-Pt surface act as two distinguishable electroadsorbed H species. An exothermic reaction occurs at the UPD H range. Both the UPD H peak and the transition region are attributed to the two distinct adsorption sites of the UPD H and OPD H on the poly-Pt surface.

Soil Properties Affecting C-type slope as a Parameter for Silica Sorption of Soils (토양의 규산 흡착 지표인 C-type slope에 영향을 미치는 토양 특성)

  • Lee, Sang Eun;Lim, Woo Jin;Ahn, Jae Ho;Kim, Jeong-Gyu;Lim, Soo-Kil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.6
    • /
    • pp.365-370
    • /
    • 2004
  • To invesligate the characteristics of silica sorption on soils silica sorption experiments were conducted with 9 soils at 4 pH levels (5, 6, 7, and 8). Silica sorption increased in great extent with increase of pH. At the same pH level silica sorption increased linearly with increase of equilibrium $SiO_2$ concentration. Silica sorption characteristics was C-type. The C-type slope, i.e., the slope of linear regression of silica sorption isotherm, increased exponentially with increase of pH in all soils. Log(C-type slope) increased linearly with increase of pH in all soils. The slopes of linear regression were similar in most soils from 0.29 to 0.34 except Sachon and Jonggog soil. None of the soil properties showed any correlation with the slope of linear regression of Log(C-type slope) to pH. Only $Fe_o$ (oxalate extractable Fe oxides) was significantly correlated with the Log(C-type slope) at pH 7 in simple correlation analysis, and was shown to be the principal contributor as determined by standardized multiple linear regression.