• Title/Summary/Keyword: equilibrium factor

Search Result 418, Processing Time 0.027 seconds

Parametric Studies of Slope stability Analysis by 3D FEM Using Strength Reduction Method (강도감소법에 의한 3차원 사면안정해석에 대한 매개변수 연구)

  • Kim, Young-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.25-32
    • /
    • 2016
  • The two-dimensional (2D) analysis is widely used in geotechnical engineering for slope stability analysis assuming a plane-strain condition. It is implicitly assumed that the slip surface is infinitely wide, and thus three-dimensional (3D) end effects are negligible because of the infinite width of the slide mass. The majority of work on this subject suggests that the 2D factor of safety is conservative (i.e. lower than the 'true' 3D factor of safety). Recently, the 3D finite element method (FEM) became more attractive due to the progress of computational tools including the computer hardware and software. This paper presents the numerical analyses on rotational mode and translational mode slopes using the 2D and 3D FEM as well as 2D limit equilibrium methods (LEM). The results of the parametric study on the slope stability due to mesh size, dilatency angle, boundary conditions, stress history and model dimensions change are analysed. The analysis showed that the factor of safety in 3D analysis is always higher than that in the 2D analysis and the discrepancy of the slope width in W direction on the factor of safety is ignored if the roller type of W direction conditions is applied.

A Study on the Response Modification Factor for a 5-Story Reinforced Concrete IMRF (5층 철근콘크리트 중간모멘트골조의 반응수정계수에 관한 연구)

  • Kang, Suk-Bong;Lim, Byeong-Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.13-21
    • /
    • 2012
  • In this study, the response modification factor for a RC IMRF is evaluated via pushover analysis, where 5-story structures were designed in accordance with KBC2009. The bending moment-curvature relationship for beams and columns was identified with a fiber model, and the bending moment-rotation relationship for beam-column joints was calculated using a simple and unified joint shear behavior model and the moment equilibrium relationship for the joint. The results of the pushover analysis showed that the strength of the structure was overestimated with negligence of the inelastic shear behavior of the beam-column joint, and that the average response modification factor for category C was 7.78 and the factor for category D was 3.64.

A Basic Study on Upward Soil Nailing Combined Horizontal Drainage (수평배수공을 겸한 상향식 쏘일네일링 공법의 기초연구)

  • Kim, Hongtaek;Lee, Jungjae;Chung, Jongmin;Choi, Geunhyeok;Lee, In
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.151-158
    • /
    • 2009
  • In the early 1990s, soil nailing was first introduced as method of reinforcement for the slope stability and ground excavation, and as its application was increased the improved soil nailing was also developed. Most recently used for grout soil nailing greatly improve the methods and techniques for self-improvement techniques are classified as soil nailing. As the representative for the grout pressure method to improve the join method pressure grouting and improved method for the self-drilled soil nailing, removable soil nailing, upward soil nailing combined with horizontal drainage system. This paper is to compare upward soil nailing combined with horizontal drainage system with downward direction of the soil nailing. In order to study the limit equilibrium slope stability analysis and comparison with factor of safage, excavation for the vertical displacement for comparison with continuous analysis. According to this study, safage factor is decreased considerably using limit equilibrium analysis and makes no odds for the horizontal displacement when soil nail was installed upward.

  • PDF

Landslide Analysis of River Bank Affected by Water Level Fluctuation II (저수위 변동에 영향을 받는 강기슭의 산사태 해석 II)

  • Kim, You-Seong;Wang, Yu-Mei;Choi, Jae-Seon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.87-93
    • /
    • 2010
  • The change of water level in reservoirs is an important factor causing failure of bank slopes, i.e. landslide. The water level of Three Gorges reservoir in China fluctuate between 145 m and 175 m, as a matter of flood control. During its normal operational state, the rate of water level fluctuation is supposed to range from 0.67 m/d to 3.0 m/d. Majiagou slope is located on the left bank of Zhaxi River, 2.1 km up from the outlet. Zhaxi River is a tributary of the Yangtze River within the Three Gorges area, of which the water level changes with the reservoir. At the back of Majiagou slope, a 20 m long and 3~10 cm wide fissure developed just after the reservoir water level rose from 95 m to 135 m in 2003. This big fissure was a full suggestion of potential failure of this slope. In this study, the pore water pressure files obtained from seepage analysis were used to evaluate the change in factor of safety (FS) with reservoir water level. Slope stability analyses then were carried out, with fully specified slip surface and limit equilibrium method. In the limit equilibrium analysis, the contribution of negative pore water pressure to shear strength was considered by the use of Fredlund's shear strength equation for unsaturated soils. On the base of the analyses, the change of FS with reservoir water level was interpreted in detail. It was found that FS against bank slopes decreases with the rise of the reservoir water level and increases with the drawdown of the reservoir water level. The most dangerous state was when the reservoir water level stays at the highest for a long time.

  • PDF

Stability Assesment of the Slope at the Disposal Site of Waste Rock in Limestone Mine (석회석 광산에서 폐석 적치장 사면의 안정성 평가)

  • Lee, Sang-Eun;Jang, Yoon-Ho
    • Tunnel and Underground Space
    • /
    • v.20 no.6
    • /
    • pp.475-490
    • /
    • 2010
  • The analysis of slope stability was performed from seven sites among total eleven sites of waste rock which are divided into two objects (mullock-pile and rock mass) according to the location of dumping-dropping point in L limestone Mine. The analysis of circular failure using Bishop's simplified method and the finite element method for mullock-pile slopes were adopted. For rock mass slopes, identification of failure modes on stereonet projection was determined, thereby limit equilibrium analysis was applied to obtain the safety factor of slopes and the finite element method was used to understand overall behavior of slope. Phi-c reduction method was used to calculate the safety factor of slopes through the finite element method. In mullock-pile slope of zone D and rock slopes of zone F and G, the assurance of slope stability was difficult, and the plans to assure the stability of slopes were proposed on the basis of the analysis of slopes at disposal sites of waste rock. Therefore, the method of piling with waste rock by dozer pushing after dumping for mullock-pile slope of zone D is required, and the method of piling after moving to the place which has no fault zone for rock slope of zone F and G is recommended.

Critical Load and Effective Buckling Length Factor of Dome-typed Space Frame Accordance with Variation of Member Rigidity (돔형 스페이스 프레임의 부재강성변화에 따른 임계좌굴하중과 유효좌굴길이계수)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.1
    • /
    • pp.87-96
    • /
    • 2013
  • This study investigated characteristics of buckling load and effective buckling length by member rigidity of dome-typed space frame which was sensitive to initial conditions. A critical point and a buckling load were computed by analyzing the eigenvalues and determinants of the tangential stiffness matrix. The hexagonal pyramid model and star dome were selected for the case study in order to examine the nodal buckling and member buckling in accordance with member rigidity. From the numerical results, an effective buckling length factor of adopted models was bigger than that of Euler buckling for the case of fixed boundary. These numerical models indicated that the influence of nodal buckling was greater than that of member buckling as member rigidity was higher. Besides, there was a tendency that the bifurcation appeared on the equilibrium path before limit point in the member buckling model.

Physical Properties of Corrugated Fiberboard and Estimation of Box Compression Strength with Changes of Relative Humidity (상대습도에 따른 농산물 포장용 골판지의 원지의 물리적 특성 변화 및 상자압축강도의 예측)

  • Jo, Jung-Youn;Shin, Jun-Sub;Kim, Jong-Kyoung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.11 no.2
    • /
    • pp.91-96
    • /
    • 2005
  • Determination of safety factor of corrugated fiberboard boxes used for agricultural products is very complicated process due to nature of living products. Moisture content is one of the most critical factors to determine overall physical strength of paper, so its influences on strength properties of corrugated board made from different raw materials must be quantified. The results obtained from the study were summarized as follows; 1. Results show a detrimental effect on bursting strength and compressive strength of liners with increasing relative humidity of environment and moisture content of liners. 2. The relevance of equilibrium moisture content at varying relative humidity levels was proved and its relationship was used as an important factor to estimate box compression strength. 3. Test results was statistically used for establish the relationship between relative humidity and moisture content of liners. Estimated compression strength of boxes at varying moisture content was similar to results of theoretical equations such as Kellicutt's. Further study could be carried out in order to determine a optimum safety factors of various corrugated board boxes for agricultural products.

  • PDF

Simplified sequential construction analysis of buildings with the new proposed method

  • Afshari, Mohammad Jalilzadeh;Kheyroddin, Ali;Gholhaki, Majid
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.77-88
    • /
    • 2017
  • Correction Factor Method (CFM) is one of the earliest methods for simulating the actual behavior of structure according to construction sequences and practical implementation steps of the construction process which corrects the results of the conventional analysis just by the application of correction factors. The most important advantages of CFM are the simplicity and time-efficiency of the computations in estimating the final modified forces of the beams. However, considerable inaccuracy in evaluating the internal forces of the other structural members obtained by the moment equilibrium equation in the connection joints is the biggest disadvantage of the method. This paper proposes a novel method to eliminate the aforementioned defect of CFM by using the column shortening correction factors of the CFM to modify the axial stiffness of columns. In this method, the effects of construction sequences are considered by performing a single step analysis which is more time-efficient when compared to the staged analysis especially in tall buildings with higher number of elements. In order to validate the proposed method, three structures with different properties are chosen and their behaviors are investigated by application of all four methods of: conventional one-step analysis, sequential construction analysis (SCA), CFM, and currently proposed method.

Vortex relaxation for the surface barrier in 3D type-II superconductor (3차원 제2종 초전도체의 표면장벽에 대한 자속의 이완)

  • Kim, Gun-Cheol;Cheon, Mi-Yeon;Kim, Young-Cheol;Kim, Bong-Jun
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.262-265
    • /
    • 1999
  • We report the activation energies which is calculated by adding a term being neglected usually, and magnetic relaxation effects for the surface barrier. The activation energies U at initial magnetization m (m$_{en}$ and m$_{ex}$) and equilibrium magnetization m$_{eq}$ are nearly similar to those of Burlachkov, but the m dependence of the activation energy U is remarkably different. The relaxation effects, which were determined by the m dependence of the activation energies U, are nonlinear for vortex entry, but linear at the initial stage and nonlinear at m(Int) ${\simeq}$ m$_{eq}$ for vortex exit. During relaxation process, the vortex entry at m = m$_{en}$ is faster than the vortex exit at m = m$_{ex}$ by about factor 90. The vortex exit at m = m$_{eq}$ is faster than one at m = m$_{ex}$ by about factor 1.3

  • PDF

Dynamics of alpine treelines: positive feedbacks and global, regional and local controls

  • Kim, Jong-Wook;Lee, Jeom-Sook
    • Journal of Ecology and Environment
    • /
    • v.38 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • Whilst it is clear that increasing temperatures from global environmental change will impact the positions of alpine treelines, it is likely that a range of regional and local scaled factors will mediate the overall impact of global scale climate drivers. We summarized 12 categories of abiotic and biotic factors as 4 groups determining treeline positions. First, there are global factors related to climate-induced growth limitation and carbon limitation. Second, there are seven regional and local factors related to treeline dynamics including frost stress, topography, water stress, snow, wind, fire and non-fire disturbance. Third, species-specific factors can control treeline dynamics through their influence on reproduction and life history traits. Fourth, there are positive feedbacks in structuring the dynamics of treelines. Globally, the commonly accepted growth limitation hypothesis is that growth at a treeline is limited by temperature. Meanwhile, positive feedbacks between canopy cover and tree establishment are likely to control the spatial pattern and temporal dynamics of many treelines. The presence of non-linear dynamics at treelines has implications for the use of treelines as barometers of climate change because the lagged responses and abrupt shifts inherent in non-equilibrium systems may combine to mask the overall climate trend.