• Title/Summary/Keyword: equilibrium equation

Search Result 843, Processing Time 0.017 seconds

Thermodynamic Properties for the Chemical Reactions of [Cu(dl-trans-[14]-diene)]$^{2+}$ with S$_2O_3^{2-},\;SCN^-,\;I^-\;and\;NO_2^-$ ([Cu(dl-trans-[14]-diene)]$^{2+}$ 착이온과 음이온 (S$_2O_3^{2-},\;SCN^-,\;I^-$ 및 NO$_2^-$)간의 화학반응에 대한 열역학적 성질 (${\Delta}G;\;{\Delta}H;\;{\Delta}V$))

  • Yu Chul Park;Jong Chul Byun
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.239-246
    • /
    • 1985
  • The equilibria of chemical reaction between [Cu(dl-trans-[14]-diene)]$^{2+}$ and L$^{n-}$(S$_2$O$_3^{2-}$, SCN$^-$, I$^-$, NO$_2^-$) ions were studied by the spectrophotometric method in the range of 15 to 35$^{\circ}C$ and 1 to 1500bar. The equilibrium constants(K) for L$^{n-}$ = S$_2$O$_3^{2-}$, SCN$^-$, I$^-$ and NO$_2^-$ ions at 25$^{\circ}C$ and 1500bar were 3.0, 1.9, 0.6 and 0.5, respectively. The values of K decreased with increasing pressure and temperature. From the temperature effect on equlibrium constant, the thermodynamic parameters(${\Delta}G^{\circ}$, ${\Delta}H^{\circ}$, ${\Delta}S^{\circ}$) of reaction were evaluated and the reactions of [Cu(dl-trans-[14]-diene)]2+ ion with S$_2$O$_3^{2-}$, SCN$^-$ and I$^-$ except NO$_2^-$ ion were exothermic. The volume changes of reaction(${\Delta}$V) had positive values for all the used anions. The values of ${\Delta}$V in cm$^3$/mole for S$_2$O$_3^{2-}$ ion at 1,500, 1,000 and 1,500bar were 26, 22, 19 and 16, and those for S$_2$O$_3^{2-}$, SCN$^-$, I$^-$ and NO$_2^-$ ions at atmospheric pressure 26, 30, 64 and 45, respectively. Bonding character between Cu(Ⅱ)-complex ion and L$^{n-}$ was discussed by comparing both the equlibrium constants experimentally determined and those calculated according to Fuoss's ion-pair equation in case of S$_2$O$_3^{2-}$ ion.

  • PDF

A Study on the Fixed Forms and Adsorption of Phosphorus in Citrus Orchard Soil Derived from Volcanic Ash (제주도(濟州道) 감귤원(柑橘園) 토양(土壤)의 인산형태(燐酸形態) 및 흡착(吸着)에 관(關)한 연구(硏究))

  • Kim, Hyeong-Ok
    • Applied Biological Chemistry
    • /
    • v.17 no.3
    • /
    • pp.219-234
    • /
    • 1974
  • A series of experiments was conducted to study the behavior of the phosphorus added to the soils having the high phorphorus fixing capacity derived from volcanic ash in Cheju Island. Soil samples were taken from different depths of 0-10, 10-30, and 30-50cm in six citrus orchards where heavy application of phosphate fertilizer has been practised. Various forms of phosphorus were determined and phosphorus adsorption experiments were performed. The results obtained can be summarized as follows: 1. The content of inorganic phosphorus fractions determined by the method of Chang and Jackson was: water soluble P

  • PDF

Geochemical Equilibria and Kinetics of the Formation of Brown-Colored Suspended/Precipitated Matter in Groundwater: Suggestion to Proper Pumping and Turbidity Treatment Methods (지하수내 갈색 부유/침전 물질의 생성 반응에 관한 평형 및 반응속도론적 연구: 적정 양수 기법 및 탁도 제거 방안에 대한 제안)

  • 채기탁;윤성택;염승준;김남진;민중혁
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.103-115
    • /
    • 2000
  • The formation of brown-colored precipitates is one of the serious problems frequently encountered in the development and supply of groundwater in Korea, because by it the water exceeds the drinking water standard in terms of color. taste. turbidity and dissolved iron concentration and of often results in scaling problem within the water supplying system. In groundwaters from the Pajoo area, brown precipitates are typically formed in a few hours after pumping-out. In this paper we examine the process of the brown precipitates' formation using the equilibrium thermodynamic and kinetic approaches, in order to understand the origin and geochemical pathway of the generation of turbidity in groundwater. The results of this study are used to suggest not only the proper pumping technique to minimize the formation of precipitates but also the optimal design of water treatment methods to improve the water quality. The bed-rock groundwater in the Pajoo area belongs to the Ca-$HCO_3$type that was evolved through water/rock (gneiss) interaction. Based on SEM-EDS and XRD analyses, the precipitates are identified as an amorphous, Fe-bearing oxides or hydroxides. By the use of multi-step filtration with pore sizes of 6, 4, 1, 0.45 and 0.2 $\mu\textrm{m}$, the precipitates mostly fall in the colloidal size (1 to 0.45 $\mu\textrm{m}$) but are concentrated (about 81%) in the range of 1 to 6 $\mu\textrm{m}$in teams of mass (weight) distribution. Large amounts of dissolved iron were possibly originated from dissolution of clinochlore in cataclasite which contains high amounts of Fe (up to 3 wt.%). The calculation of saturation index (using a computer code PHREEQC), as well as the examination of pH-Eh stability relations, also indicate that the final precipitates are Fe-oxy-hydroxide that is formed by the change of water chemistry (mainly, oxidation) due to the exposure to oxygen during the pumping-out of Fe(II)-bearing, reduced groundwater. After pumping-out, the groundwater shows the progressive decreases of pH, DO and alkalinity with elapsed time. However, turbidity increases and then decreases with time. The decrease of dissolved Fe concentration as a function of elapsed time after pumping-out is expressed as a regression equation Fe(II)=10.l exp(-0.0009t). The oxidation reaction due to the influx of free oxygen during the pumping and storage of groundwater results in the formation of brown precipitates, which is dependent on time, $Po_2$and pH. In order to obtain drinkable water quality, therefore, the precipitates should be removed by filtering after the stepwise storage and aeration in tanks with sufficient volume for sufficient time. Particle size distribution data also suggest that step-wise filtration would be cost-effective. To minimize the scaling within wells, the continued (if possible) pumping within the optimum pumping rate is recommended because this technique will be most effective for minimizing the mixing between deep Fe(II)-rich water and shallow $O_2$-rich water. The simultaneous pumping of shallow $O_2$-rich water in different wells is also recommended.

  • PDF