• 제목/요약/키워드: equation of hydrolysis rate

검색결과 66건 처리시간 0.024초

Kinetics and Mechanism of the Hydrolysis of ${\alpha}$, N-Diphenylnitrone

  • Tae-Rin Kim;Kwang-Il Lee
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권3호
    • /
    • pp.273-276
    • /
    • 1991
  • The rate constants of hydrolysis of ${\alpha}$, N-diphenylnitrone and its derivatives have been determined by UV spectrophotometry from pH 2.0 to 13.5, and a rate equation which can be applied over a wide pH range was obtained. On the basis of rate equation, hydrolysis product, and general base and substituent effects, a plausible mechanism of hydrolysis has been proposed: Below pH 5, the hydrolysis was initiated by the protonation and followed by the addition of water to ${\alpha}$-carbon. However, above pH 11, the hydrolysis was proceeded by the addition of hydroxide ion to ${\alpha}$-carbon. In the range of pH 5-11, the addition of water to nitrone is rate controlling step.

Phenylvinylsulfone의 가수분해 반응메카니즘과 그의 반응속도론적 연구 (Kinetics and Mechanism of the Hydrolysis of Phenylvinylsulfone)

  • 김태린;최준시
    • 대한화학회지
    • /
    • 제19권2호
    • /
    • pp.123-129
    • /
    • 1975
  • Phenylvinylsulfone의 가수분해 속도상수를 자외선분광기를 사용하여 구하였으며 아울러 넓은 범위에서 잘맞는 반응속도식도 얻었다. 이 식에 의하면 넓은 pH범위, 특히 종전에 잘 규명된 바 없는 산성용매 속에서의 반응 및 수산화이온의 촉매역할등도 정량적으로 잘 설명할 수 있음을 알았다. 즉 pH7 이하에서는 물의 첨가로 부터 반응이 시작됨을 알 수 있었으며 pH9 이상에서는 수산화이온만이 반응에 참여함을 알았다.

  • PDF

Kinetics and Mechanism of the Hydrolysis of N-(Benzenesulfonyl) benzimidoyl Chlorides

  • Kim, Tae-Rin;Kwon, Hyo-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • 제9권3호
    • /
    • pp.157-160
    • /
    • 1988
  • The rates of hydrolysis of N-(benzenesulfonyl) benzimidoyl chlorides (p-H, $p-CH_3,\;p-CH_3,\;p-NO_2\;and m-NO_2$) have been measured by UV spectrometry in 60% methanol-water at $25^{\circ}C$ and a rate equation which can be applied over wide pH range was obtained. Below pH 7.00, the substituent effect on the hydrolysis rate of N-(benzenesulfonyl) benzimidoyl chloride was found to conform to the Hammett ${\sigma}$ constant with ${\rho}$ = -0.91, whereas above pH 9.00, with ${\rho}$ = 0.94. On the basis of the rate equation obtained and the effect of solvent, substituents and salt, the following reaction mechanism were proposed; below pH 7.00, the hydrolysis of N-(benzenesulfonyl) benzimidoyl chloride proceeds by $S_N1$ mechanism, however, above pH 9.00, the hydrolysis is initiated by the attack of the hydroxide ion and in the range of pH 7.00-9.00, these two reactions occur competitively.

신남산 유도체 I, Cinnamanilide 유도체의 가수분해 메카니즘과 반응속도론적 연구 (Cinnamic Acid Derivatives I, The Kinetics and Mechanism of the Hydrolysis and Synthesis of Cinnamanilide Derivatives)

  • 이기창;황용현;이광일;정택서;박광하
    • 한국응용과학기술학회지
    • /
    • 제6권2호
    • /
    • pp.59-65
    • /
    • 1989
  • The rate constants of the hydrolysis of cinnamanilide derivatives were determined UV spectrometry in $H_2SO_4\;(5{\sim}20N)$, NaOH($5{\sim}11N)\;at\;50{\sim}110^{\circ}C$ and rate equation could be applied over a strong acid and strong base were obtained. Final product of the hydrolysis was a cinnamic acid. The ${\rho}$ values obtained from the slope of linear plots of log $k_{abs}$ vs. Hammet $t{\sigma}$ constants were slightly negatives, Substituents on cinnamanilide showed a relatively small effect, with hydrolysis facilitated be electron donating group. Activation energy(Ea)was also calculated for the hydrolysis of the cinnamanilide. From this reaction rate equation, substituent effect and experimental of rate constants, that the hydrolysis of cinnamanillde was Initiated by the netural molecule of $H_2O$ which do not dissociate at strong acid, and proceeded by hydroxide ion at strong base.

N-tert-Butyl-${\alpha}$-Phenylnitrone 유도체의 가수분해 반응메카니즘과 반응속도론적 연구 (A Study on the Kinetics and Mechanism of Hydrolysis of N-tert-Butyl-${\alpha}$-Phenylnitrone Derivatives)

  • 곽천근;이광일
    • 한국응용과학기술학회지
    • /
    • 제15권2호
    • /
    • pp.1-9
    • /
    • 1998
  • The rate constants of hydrolysis of N-tert-butyl-${\alpha}$-phenylnitrone and its derivatives have been determined by UV spectrophotometry at $25^{\circ}C$ and a rate equation which can be applied over a wide pH range was obtained. On the basis of rate equations derived and judging from the hydrolysis products obtained and general base and substituent effects, plausible mechanism of hydrolysis in various pH range have been proposed. Below pH 4.5, the hydrolysis was initiated by the protonation and followed by the addition of water to ${\alpha}-carbon$. Above pH 10.0, the hydrolysis was proceeded by the addition of hydroxides ion to ${\alpha}-carbon$. In the range of 4.5${\sim}$10.0 the addition of water to nitrone was rate controlling step.

Arylmethylenemalononitrile의 가수분해반응메카니즘과 그의 반응속도론적 연구 (Kinetics and Mechanism of the Hydrolysis of an Arylmethylenemalononitrile)

  • 김태린;임무일
    • 대한화학회지
    • /
    • 제17권2호
    • /
    • pp.130-135
    • /
    • 1973
  • 여러 pH에서 3,4-methylenedioxyphenylmethyllenemalonitrile의 가수분해속도상수를 자외선분광광도법에 의하여 측정하여 넓은 궤도 범위에서 잘 맞는 반응속도식을 구하였다. 이 속도식에 의하면 가수분해 반응메카니즘 특히 종전에 잘 규명된 바 없는 산성 용매 속에서의 반응 과정을 잘 설명할 수 있다. 즉 pH 5 이하에서는 물의 첨가로서 가수분해가 시작되며 pH 6∼8 사이에서는 물분자와 수산화이온의 첨가가 경쟁적으로 일어나나 pH 9 이상에서는 수산화이온만이 첨가된다. 한편 친핵성 시약과 촉매 역할을 겸하고 있는 수산화이온 및 물의 역할로 잘 설명할 수가 있었다.

  • PDF

1,1-Dicyano-2-p-dimethylaminophenyl-2-chloroethylene의 가수분해 반응메카니즘과 그의 반응속도론적 연구 (The Kinetics and Mechanism of the Hydrolysis of a 1,1-Dicyano-2-p-dimethylaminophenyl-2-chloroethylene)

  • 김태린;허태성
    • 대한화학회지
    • /
    • 제18권6호
    • /
    • pp.430-436
    • /
    • 1974
  • 여러 pH에서 1,1-dicyano-2-p-dimethylaminophenyl-2-chloroethylene(DPC)의 가수분해 속도상수를 측정하고 넓은 pH 범위에서 잘 맞는 반응 속도로식을 구하였다. 이 식에 의하면 넓은 pH 범위에서 DPC에 대한 가수분해 반응메카니즘을 잘 설명할 수 있다. pH3이하와 7.5이상에서는 속도상수는 hydronium ion과 hydroxide ion 농도에 각각 비례한다. 또 pH 3∼7.5 사이에서는 물, hydronium ion 과 hydroxide ion이 DPC의 가수 분해에 촉매 역활을 함을 알았다.

  • PDF

Mechanism of the Hydrolysis of 2-Phenyl-4H,5H,6H-3-methyl-3-thiazinium Perchlorate Derivatives

  • 김태린;이소영;변상용;김주창;한만소
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권10호
    • /
    • pp.1213-1217
    • /
    • 1999
  • Hydrolysis reactions of 2-phenyl-4H,5H,6H-3-methyl-3-thiazinium perchlorate (PTP) and its derivatives at various pH have been investigated kinetically. The hydrolysis is quantitative, producing N-3-mercaptopropyl-N-methylbenzamide as the only product in the all pH ranges. The observed rate of hydrolysis of PTP was always of the first-order. For hydrolysis from PTP, Hammett ρvalues were 0.53, 0.84 and 1.13 for pH 5.0, 8.0, and 10.0, respectively. Bronsted βvalue was 0.53 for general base catalysis. This reaction is catalyzed by general w acetate concentration. However, as the amount of base becomes larger, the rate of hydrolysis reaction approaches the limiting values. The plot of log k vs. pH shows that the rate constants (kt) are two different regions in the profile; one part is directly proportional to hydroxide ion concentration and the other is not. On the bases of these result, the plausible hydrolysis mechanism and a reaction equation were proposed: Below pH 4.5, the hydrolysis was initiated by the addition of water to α-carbon. Above pH 9.0, the hydrolysis was proceeded by the addition of hydroxide ion to α-carbon. However, in the range of pH 4.5-8.0, these two reactions occured competitively.

신남산 유도체 Ⅳ, Cinnamylidene anilin 유도체의 가수분해 반응에 대한 메카니즘과 그 반응속도론적 연구 (Cinnamic Acid Derivatives IV, The Kinetics and Mechanism of the Hydrolysis of Cinnamylidene aniline Derivatives)

  • 이기창;박수인;황용현;이광일;최봉종;정덕채
    • 한국응용과학기술학회지
    • /
    • 제8권1호
    • /
    • pp.1-7
    • /
    • 1991
  • The kinetic of hydrolysis for cinnamylidene aniline derivatives has been investigated by ultraviolet spectrophotometry in 20% (v/v) dioxane - $H_2O$ at $25^{\circ}C$. A rate equation which can be applied over wide pH range was obtained. The substituent effects on cinnamylidene aniline derivatives were studied and the hydrolysis was facilitated by electron attracting group. Final products of the hydrolysis were cinnamaldehyde and aniline. From the rate equation, substituent effect and final products, the hydrolysis of cinnamylidene aniline derivatives was initiated by the neutral molecule of $H_2O$ which does not dissociate at below pH 9.0${\sim}$12.0, but proceeded by the hydrogen ion at above pH 5.0${\sim}$9.0.

Kinetics and Mechanism of Alkaline Hydrolysis of [(Methoxy)(p-substituted styryl)-carbene] Pentacarbonyl Chromium(0) Complexes in Aqueous Acetonitrile

  • Shin, Gap-Cheol;Hwang, Jae-Young;Yang, Ki-Yull;Koo, In-Sun;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권12호
    • /
    • pp.1981-1985
    • /
    • 2005
  • Kinetic studies have been performed for alkaline hydrolysis of a series of [(methoxy)(p-substituted styryl)carbene]pentacarbonyl chromium(0) complexes ($(CO)_5$Cr=$C(OCH_3)CH=CHC_6H_4X$, X = p-$OCH_3$, p-$CH_3$, H, p-Cl, p-$NO_2$). Second-order rate constants $(k_{{OH}^-})$ for the alkaline hydrolysis in 50% acetonitrile-water(v/v) were determined spectrophotometrically at various temperatures. At a low pH region (pH < 7.5), the observed rate constant $(k_{obs})$ remained constant with a small value, while in a high pH region (pH > 9.5), $k_{obs}$ increases linearly with increasing the pH of the medium. The second-order rate constants $(k_{{OH}^-})$ increase as the substituent X changes from a strong electron donating group to a strong electron withdrawing group. The Hammett plot obtained for the alkaline hydrolysis is consisted of two intersecting straight lines. The nonlinear Hammett plot might be interpreted as a change in the rate-determining step. However, the fact that the corresponding Yukawa-Tsuno plot is linear with $\rho$ and r values of 0.71 and 1.14, respectively indicates that the nonlinear Hammett plot is not due to a change in the rate-determing step but is due to ground-state stabilization through resonance interaction. The positive $\rho$ value suggests that nucleophilic attack by $OH^-$ to form a tetrahedral addition intermediate is the rate-determining step. The large negative ${\Delta}S^\neq$ value determined in the present system is consistent with the proposed mechanism.