• Title/Summary/Keyword: equalizer

Search Result 774, Processing Time 0.027 seconds

Bi-Histogram Equalization based on Differential Compression Method for Preserving the Trend of Natural Mean Brightness (자연스러운 영상의 평균 밝기 유지를 위한 차별적 압축 방법 기반의 분할 히스토그램 평활화)

  • Lee, Jae-Won;Hong, Sung-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.19 no.4
    • /
    • pp.453-467
    • /
    • 2014
  • A typical histogram equalization contrast enhancement effect for improving the image quality is excellent. However, because it appears that excessive changes of the brightness values, The average brightness of the image is changing in units of frames of applications such as a TV video is unsuitable. In order to solve these drawbacks, a modified method of histogram equalization on various studies have been made. But the result images of existing methods sometimes shown visual degradations such as over-enhancement and false contouring. In this paper, we propose improved contrast enhancement method through bi-histogram equalization using target mean brightness based on differential compression method. The proposed method is based on the average brightness value by dividing the histogram, the histogram for each zone, according to the frequency differential of compression. And equalize the modified histogram based on target mean brightness. This allows to suppress deterioration of picture quality, and changes in the average brightness of each frame of video, while maintaining and improving the contrast. Experimental results show that the proposed method compared to the conventional method, the average brightness of each frame from a movie well maintained, and no degradation of the image quality showed a good effect to improve the contrast.

The Performance Evaluation and Analysis of Next Generation Wireless LAN with OFDM (OFDM을 적용한 차세대 무선 LAN의 성능 평가 및 분석)

  • Han, Kyung-Su;Youn, Hee-Sang
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.1
    • /
    • pp.37-43
    • /
    • 2002
  • This paper describes the performance evaluation and analysis of Wireless Local Area Network (W-LAN) in the 5 GHz ISM-band in compliance with IEEE 802.11a. At present, most W-LAN products are based on 2.4 GHz band, but low speed (11Mbps) has the limitation to serve systems demanding high-speed data transmission. To solve this problem, it is necessary to design next generation W-LAN system with 54Mbps in the 5GHz. It is sure that implementation of next generation W-LAN will bring competitive advantages. In particular, it will support telecommunications for high-speed mobile environments as well as for fixed places such as a school zone, a lecture room, a hospital and other premises. A few simulation methods are applied to more accurate and reliable performance analysis of next generation W-LAN. To verify if continuous data service is supported for a high-speed mobile notebook, multi-path fading channels between wireless Access Point (AP) and wireless Network Interface Card (NIC) are modeled. In addition, low interference is analyzed via convolutional codes and Orthogonal Frequency-Division Multiplexing (OFDM). Also, to obtain reliable Bit Error Rate (BER), a single tap Least Mean Square (LMS) equalizer is applied. Given the above simulation, next generation W-LAN is an ideal solution for continuous data transmission in high-speed mobile environments.

  • PDF

A Design of DLL-based Low-Power CDR for 2nd-Generation AiPi+ Application (2세대 AiPi+ 용 DLL 기반 저전력 클록-데이터 복원 회로의 설계)

  • Park, Joon-Sung;Park, Hyung-Gu;Kim, Seong-Geun;Pu, Young-Gun;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.4
    • /
    • pp.39-50
    • /
    • 2011
  • In this paper, we presents a CDR circuit for $2^{nd}$-generation AiPi+, one of the Intra-panel Interface. The speed of the proposed clock and data recovery is increased to 1.25 Gbps compared with that of AiPi+. The DLL-based CDR architecture is used to generate the multi-phase clocks. We propose the simple scheme for frequency detector (FD) to mitigate the harmonic-locking and reduce the complexity. In addition, the duty cycle corrector that limits the maximum pulse width is used to avoid the problem of missing clock edges due to the mismatch between rising and falling time of VCDL's delay cells. The proposed CDR is implemented in 0.18 um technology with the supply voltage of 1.8 V. The active die area is $660\;{\mu}m\;{\times}\;250\;{\mu}m$, and supply voltage is 1.8 V. Peak-to-Peak jitter is less than 15 ps and the power consumption of the CDR except input buffer, equalizer, and de-serializer is 5.94 mW.

A MB-OFDM UWB Receive Design and Evaluation Using 4. Parallel Synchronization Architecture (4 병렬 동기 구조를 이용한 MB-OFDM UWB 수신기 설계 및 평가)

  • Shin Cheol-Ho;Choi Sangsung;Lee Hanho;Pack Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.11 s.102
    • /
    • pp.1075-1085
    • /
    • 2005
  • The purpose of this paper is to design the architecture for synchronization of MB-OFDM UWB system that is being processed the standardization for Alt-PHY of WPAN(Wireless Personal Area Network) at IEEE802.15.3a and to analyze the implementation loss due to 4 parallel synchronization architecture for design or link margin. First an overview of the MB-OFDM UWB system based on IEEE802.15.3a Alt-PHY standard is described. The effects of non-ideal transmission conditions of the MB-OFDM UWB system including carrier frequency offset and sampling clock offset are analyzed to design a full digital architecture for synchronization. The synchronization architecture using 4-parallel structure is then proposed to consider the VLSI implementation including algorithms for carrier frequency offset and sampling clock offset to minimize the effects of synchronization errors. The overall performance degradation due to the proposed synchronization architecture is simulated to be with maximum 3.08 dB of the ideal receiver in maximum carrier frequency offset and sampling clock offset tolerance fir MB-OFDM UWB system.

Performance Analysis of New LMMSE Channel Interpolation Scheme Based on the LTE Sidelink System in V2V Environments (V2V 환경에서 LTE 기반 사이드링크 시스템의 새로운 LMMSE 채널 보간 기법에 대한 성능 분석)

  • Chu, Myeonghun;Moon, Sangmi;Kwon, Soonho;Lee, Jihye;Bae, Sara;Kim, Hanjong;Kim, Cheolsung;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.15-23
    • /
    • 2016
  • To support the telematics and infotainment services, vehicle-to-everything (V2X) communication requires a robust and reliable network. To do this, the 3rd Generation Partnership Project (3GPP) has recently developed V2X communication. For reliable communication, accurate channel estimation should be done. However, because vehicle speed is very fast, radio channel is rapidly changed with time. Therefore, it is difficult to accurately estimate the channel. In this paper, we propose the new linear minimum mean square error (LMMSE) channel interpolation scheme based on the Long Term Evolution (LTE) sidelink system in vehicle-to-vehicle (V2V) environments. In our proposed reduced decision error (RDE) channel estimation scheme, LMMSE channel estimation is applied in the pilot symbol, and then in the data symbol, smoothing and LMMSE channel interpolation scheme is applied. After that, time and frequency domain averaging are applied to obtain the whole channel frequency response. In addition, the LMMSE equalizer of the receiver side can reduce the error propagation due to the decision error. Therefore, it is possible to detect the reliable data. Analysis and simulation results demonstrate that the proposed scheme outperforms currently conventional schemes in normalized mean square error (NMSE) and bit error rate (BER).

Performance Analysis and Compensation of FH/SC-FDMA System for the High-Speed Communication in Jamming Channel (재밍 채널에서 고속 통신을 위한 주파수 도약 SC-FDMA 통신 시스템의 성능 분석과 보상)

  • Kim, Jang-Su;Jo, Byung-Gak;Baek, Gwang-Hoon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.6
    • /
    • pp.551-561
    • /
    • 2009
  • FH system is very robust to the jamming interference. OFDM system is very good for the high speed communication system. But, it has high PAPR. SC-FDMA system based on OFT-spread OFDM was proposed to reduce high PAPR. Therefore, in this paper, we like to introduce the FH system into SC-FDMA system, which can be best solution to the jamming hostile environment and for the high power efficiency. Also, OFDM is very sensitive to ICI. Especially, ICI generated by frequency offset and phase noise breaks the orthogonality among sub-carriers, which seriously degrades the system performance. We analyze the performance of the FH SC-FDMA system in the PBJ and MTJ channel. In this paper, the ICI effects caused by phase noise, frequency offset and Doppler effects are analyzed and we like to propose the PNFS algorithm in the equalizer to compensate the ICI influences. Through the computer simulations, we can confirm the performance improvement.

Performance of Convolution Coding Underwater Acoustic Communication System on Frequency Selectivity Index (주파수 선택 지표에 따른 길쌈 부호 수중 음향 통신 시스템의 성능 평가)

  • Seo, Chulwon;Park, Jihyun;Park, Kyu-Chil;Shin, Jungchae;Jung, Jin Woo;Yoon, Jong Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.494-501
    • /
    • 2013
  • The convolution code(CC) of code rate 1/2 as a forward error correction (FEC) in Quadrature Phase Shift Keying (QPSK) is applied to decrease bit error rate (BER) by background noise and multipath in shallow water acoustic channel. Ratio of transmitting signal bandwidth to channel coherence bandwidth is defined as frequency selectivity index. BER and bit energy-to-noise ratio gain of transmitted signal according to frequency selectivity index are evaluated. In the results of indoor water tank experiment, BER is well matched theoretical results at frequency selectivity index less than about 1.0. And bit energy-to-noise ratio gain is also matched theoretical value of 5 dB. BER is effectively decreased at frequency selective multipath channel with frequency selectivity index higher than 1.0. But bit energy-to-noise ratio greater than a certain size in terms of CC weaving is effective in reducing bit errors. In the results, the defined frequency selectivity index in this study could be applied to evaluate a performance of CC in multipath channel. Also it could effectively reduced BER in a low speed underwater acoustic communication system without an equalizer.

Self-Adaptive Performance Improvement of Novel SDD Equalization Using Sigmoid Estimate and Threshold Decision-Weighted Error (시그모이드 추정과 임계 판정 가중 오차를 사용한 새로운 SDD 등화의 자기적응 성능 개선)

  • Oh, Kil Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.17-22
    • /
    • 2016
  • For the self-adaptive equalization of higher-order QAM systems, this paper proposes a new soft decision-directed (SDD) algorithm that opens the eye patterns quickly as well as significantly reducing the error level in the steady-state when it is applied to the initial equalization stage with completely closed eye patterns. The proposed method for M-QAM application minimized the computational complexity of the existing SDD by the symbol estimated based on the two symbols closest to the observation, and greatly simplified the soft decision independently of the QAM order. Furthermore, in the symbol estimating it increased the reliability of the estimates by applying the superior properties of the sigmoid function and avoiding the erroneous estimation of the threshold function. In addition, the initialization performance was improved when an error is generated to update the equalizer, weighting the symbol decision by the threshold function to the error, resulting in an extension of the range of error fluctuations. As a result, the proposed method improves remarkably the computational complexity and the properties of initialization and convergence of the traditional SDD. Through simulations for 64-QAM and 256-QAM under multipath channel conditions with additive noise, the usefulness of the proposed methods was confirmed by comparing the performance of the proposed 2-SDD and two forms of weighted 2-SDD with CMA.

Performance Analysis of Underwater Acoustic Communication Systems Using Underwater Channel Simulation Tool (수중채널 시뮬레이터를 활용한 수중음향통신 시스템 성능 분석)

  • Oh, Se-Hyun;Kim, Hyeon-Su;Kim, J.S.;Cho, Jung-Hong;Chung, Jae-Hak;Song, H.C.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.373-383
    • /
    • 2012
  • The performance of underwater acoustic communication system is sensitive to the Doppler shift and ISI(Inter-Symbol Interference). Therefore, the simulation algorithm needs to consider time-spread due to multipath arrivals which cause the ISI, and time-varying Doppler shift along with moving source and receiver. For this purpose, VirTEX(Virtual Time series EXperiment) based on Ray model has been developed. In this paper, VirTEX is used to compare the characteristics of ocean waveguide from the experimental data and illustrate the performance. The CIR(Channel Impulse Response) that characterizes the multipath arrivals with representative time-spread due to multipath arrivals is compared between numerically simulated and experimental probe signal. Also, the communication performance analysis for BER(Bit Error Rate) is compared between numerically simulated and experimental data signal. As a result, VirTEX can be useful as a simulation tool for evaluating the performance of underwater acoustic communication system.

Performance of pilot-assisted coded-OFDM-CDMA using low-density parity-check coding in Rayleigh fading channels (레일리 페이딩 채널에서 파일럿 기법과 LDPC 코딩이 적용된 COFDM-CDMA의 성능 분석)

  • 안영신;최재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5C
    • /
    • pp.532-538
    • /
    • 2003
  • In this paper we have investigated a novel approach applying low-density parity-check coding to a COFDM-CDMA system, which operates in a multi-path fading mobile channel. Developed as a linear-block channel coder, the LDPC code is known for a superior signal reception capability in AWGN and/or flat fading channels with respect to increased encoding rates, however, its performance degrades when the communication channel becomes multi-path fading. For a typical multi-path fading mobile channel with a SNR of 16㏈ or lower. in order to obtain a BER lower than 1 out of 10000, the LDPC code with encoding rates below 1:3 requires not only the inherent parity check information but also the piloting information for refreshing front-end equalizer taps of COFDM-CDMA, periodically. For instance, while the 1:3-rate LDPC coded transmission symbol is consisted of data bits and parity-check bits in 1 to 3 proportion, on the other hand, in the proposed method the same rate LDPC transmission symbol contains data bits, parity check bits, and pilot bits in 1 to 2 to 1 proportion, respectively. The included pilot bits are effective not only for channel estimation and channel equalization but for symbol decoding by assisting the parity-check bits, hence, improving SNR vs BER performance over the conventional 1:3-rate LDPC code. The proposed system performance has been verified using computer simulations in multi-path, Rayleigh fading channels, and the results show us that the proposed method out-performs the general LDPC channel coding methods in terms of SNR vs BER measurements.