• Title/Summary/Keyword: epoxy resins

Search Result 262, Processing Time 0.032 seconds

Effect of clay mineral types on the strength and microstructure properties of soft clay soils stabilized by epoxy resin

  • Hamidi, Salaheddin;Marandi, Seyed Morteza
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.729-738
    • /
    • 2018
  • Soft clay soils due to their various geotechnical problems, stabilized with different additives. Traditional additives such as cement and lime will not able to increase the soil strength properties significantly. So, it seems necessary to use new additives for increasing strength parameters of soft clay soils significantly. Among the new additives, epoxy resins have excellent physical and mechanical properties, low shrinkage, excellent resistance to chemicals and corrosive materials, etc. So, in this research, epoxy resin used for stabilization of soft clay soils. For comprehensive study, three clay soil samples with different PI and various clay mineral types were studied. A series of uniaxial tests, SEM and XRD analysis conducted on the samples. The results show that using epoxy resin increases the strength parameters such as UCS, elastic modulus and material toughness about 100 to 500 times which the increase was dependent on the type of clay minerals type in the soil. Also, In addition to water conservation, the best efficiency in the weakest and most sensitive soils is the prominent results of stabilization by epoxy resin which can be used in different climatic zones, especially in hot and dry and equatorial climate which will be faced with water scarcity.

Preparation of Amine-epoxy Adducts(AEA)/Thin Multiwalled Carbon Nanotubes (TWCNTs) Composite Particles using Dry Processes

  • Jung, Hyun-Taek;Cho, Young-Min;Kim, Tae-Ho;Kim, Tae-Ann;Park, Min
    • Carbon letters
    • /
    • v.11 no.2
    • /
    • pp.107-111
    • /
    • 2010
  • We prepared the amine epoxy adducts (AEA)/thin multiwalled carbon nanotubes (TWCNTs) composite particles using nonsolvent based methods including dry mechano-chemical bonding(MCB) process and supercritical fluid (SCF) process. The resulting TWCNTs/AEA composite particles have been used as curing agents for urethane modified bispheol A type epoxy resin. The thermal, thermomechanical properties of the epoxy resins cured with TWCNTs/AEA composite particles were measured by DMA and the dispersion of CNT was characterized by SEM. Because of high degree of CNT dispersion, thermal and mechanical properties of the epoxy resin cured with TWCNTs/AEA composite particles prepared by SCF process are better than those cured with mechano-chemically prepared TWCNTs/AEA composite particles.

The Toughness of Castor Oil Modified Epoxy Resins by Various Cure Temperatures (경화온도에 따른 Castor Oil/epoxy의 강인성)

  • Kim, Jong Seok;Hong, Suk Pyo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.973-978
    • /
    • 1997
  • The toughness and morphology of epoxy resin based on diglycidyl ether of bisphenol A(DGEBA) cured with of tris (dimethylaminomethy]) phenol(DMP-30) and castor oil (CO) as a toughening modifier have been studied. Mixtures of CO and an epoxy resin showed a higher miscibility than the classical CTBN modified epoxy resin. The glass transition temperature($T_g$) was decreased with the CO content and the cure temperature. It is interpreted that the networks of epoxy matrix obtained at high temperature are apparently looser and more flexible due to the lower crosslinking density. The toughness was slightly increased with the CO content at $40^{\circ}C$ of curing temperature. The toughness increased with increasing the cure temperature and CO content.

  • PDF

Study on Mechanical and Thermal Properties of Tio2/Epoxy Resin Nanocomposites

  • Kim, Bu-Ahn;Moon, Chang-Kwon
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.2
    • /
    • pp.102-110
    • /
    • 2013
  • The purpose of this study was to improve the properties of epoxy resin using titanium oxide nanoparticles. The effects of particle weight fraction, dispersion agent, and curing agents with different molecular weights on the thermal and mechanical properties of titanium-oxide-reinforced epoxy resin were investigated. In addition, the effect of the particle dispersion condition on the mechanical properties of nanocomposites was studied. As a result, it was found that the glass transition temperature of film-shaped nanocomposites decreased with an in-crease in the nanoparticle content. Because nanoparticles interrupted the cross linkage between the epoxy resin and the amine curing agent, the cross-link density of the epoxy became lower and led to a decrease in $T_g$ in the nanocompo-sites. The tensile strength and modulus in film-shaped nanocomposites also increased with the particles content. But in the case of dog-bone-shaped nanocomposites, the values were not similar to the trend for the film-shaped nanocompo-sites. This was probably a result of the different nanoparticles dispersions in the epoxy resins resulting from the respective-thicknesses of the film and dog-bone-shaped samples.

A Study on the Thermosetting Properties of Epoxy Resins as Electrical Installation Materials (전기설비용 에폭시수지의 가열경화특성에 관한 연구)

  • Kim, Tae-Seoung;Yeo, In-Seon;Lee, Jin
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.2 no.1
    • /
    • pp.75-82
    • /
    • 1988
  • Epoxy, noticed as a new insulation material tor electrical installation, may become an excellent cured material from the crosslink reaction with some curing agents. The characteristics of cured Epoxy is determined by the kind of the curing agents and the method of lattice formation. The purpose of this paper, varing the process of lattice formation by various surrounding temperatures during the curing process, is to obtain the optimum curing temperature for electrical insulation from the results of investigation on the properties of cured Epoxy. In the experiment, Epoxy was cured at various temperatures between $20[^{\circ}C] and 50^[{\circ}C]$ which differ by $5^[{\circ}C]$, and then examined on the electrical insulation haracteristics as well as the thermal and mechanical stability. As a result, it is concluded that the optimum electrical insulation characteristis and mechanical strength of cured Epoxy can be obtained when cured at a surrounding temperature at $30[^{\circ}C]$.

  • PDF

Mechanical Properties of Radiation-Curing Vinyl Ester Resin (방사선 경화 비닐에스터 수지의 기계적 특성 연구)

  • Shin, Bum-Sik;Jeun, Joon-Pyo;Kim, Hyun Bin;Kang, Phil-Hyun
    • Journal of Radiation Industry
    • /
    • v.4 no.1
    • /
    • pp.19-23
    • /
    • 2010
  • Vinyl ester (VE) resins, introduced in the late 1960s, have made large strides in reinforced plastics applications as adhesive and matrix materials on their appropriate mechanical performance characteristics in the glassy state. Generally, VE resins are a group of dimethacrylate resins based on bisphenol A type epoxy resin. They exhibit easy handling properties as well as good resistance to most chemical agents due to their mechanical and thermal properties. In this study, the effects of curing methods of vinyl ester resins on gel contents, flexural strength and dynamic mechanical properties were investigated. Thermal curing (room temperature, $80^{\circ}C$) and electron beam curing were used to crosslink a VE resin/styrene complex (65/35 wt%) with methyl ethyl ketone peroxide (MEKPO) as a catalyst and an 8 wt% cobalt naphthenate in styrene solution as a accelerator. For the samples, gel contents as well as flexural strength and dynamic mechanical properties were characterized and compared by soxhlet apparatus, universal testing machine (UTM) and dynamic mechanical analysis (DMA). As a result, the electron-cured VE resin was confirmed as a better condition than those for gel contents, flexural strength and dynamic mechanical properties, respectively.

Studies on Thermal Stability and Cure Behavior of Epoxy Resins using Electron-beam Curing Technique (전자선 경화를 이용한 에폭시 수지의 열안정성과 경화동력학에 관한 연구)

  • 박수진;허건영;이재락
    • Composites Research
    • /
    • v.15 no.2
    • /
    • pp.40-47
    • /
    • 2002
  • The di-functional epoxy resins, i.e., diglycidylether of bisphenol A(DGEBA) and diglycidylethere of bisphenol F(DGEBF) were initiated by cationic catalyst, i.e., benzylquinoxalinium hexafluoroantimonate(BQH) using electron-beam(EB) technique. And the effect of structure of DGEBA and DGEBF on thermal stabilities and cure behaviors was investigated. According to the experimental results, the decomposed activation energy based on Horowitz-Metzger method was higher in the case of DGEBA, but intergral procedural decomposition temperature(IPDT) of DGEBA was lower than DGEBF. This could be interpreted in terms of high crosslink density resulted from hydroxyl bond of DGEBF backbone. It was confirmed in increasing the hydroxyl band at $7000\;cm^{-1}$ and $5235\;cm^{-1}$ using near-infrared spectroscopy(NIRS).

Nano and micro-filler $SiO_2$ 혼합비에 따른 Epoxy 수지의 절연파괴 특성

  • Han, Hyeon-Seok;Kim, Jeong-Sik;Choe, Hyeon-Min;Lee, Hyeok-Jin;Jo, Gyeong-Sun;Sin, Jong-Yeol;Hong, Jin-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.225-225
    • /
    • 2009
  • In this study, Nano and micro-filler mixture composites were fabricated by fixed value of $SiO_2$ nano-filler 0.4 [wt%] according to increase of $SiO_2$ micro-filler [wt%] from 1 to 10. Composites with a good dispersion of mixed $SiO_2$ Nano and micro-particles in the epoxy resins were prepared and experiments were performed to measure the dielectric breakdown strength properties with various temperature and thickness. The dielectric strength properties are compared and analyzed with respect to nano/micro-composites filled with $SiO_2$ fillers less than properties obtained for nanocomposites.

  • PDF