• Title/Summary/Keyword: epoxy bond

Search Result 159, Processing Time 0.02 seconds

The Influence of Resin Mixture Ratio for the Use of Prepreg on the Fatigue Behavior Properties in FRMLs

  • Song, Sam-Hong;Kim, Cheol-Woong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.33-41
    • /
    • 2000
  • Fiber reinforced metal laminates(FRMLs) were new type of hybrid materials. FRMLs consist of high strength metals(Al 5052-H34) and laminated fiber with structural adhesive bond. The effect of resin mixture ratios on the fatigue crack propagation behavior and mechanical properties of aramid fiber reinforced aluminum composites was investigated. The epoxy, diglycidylether of bisphenol A(DGEBA), was cured with methylene dianiline(MDA) with or without an accelerator(K-54). Eight kinds of resin mixture ratio were used for the experiment ; five kinds of FRMLs(1)(mixture of epoxy and curing agent) and three kinds of FRMLs(2)mixture of epoxy, curing agent and accelerator). The characteristic of fatigue crack propagation behavior and mechanical properties FRMLs(2) shows more effecting than that of FRMLs(1).

  • PDF

Analyses on the Increment of Surface Hydrophobicity of Epoxy Composites by Thermal Treatment (열철리에 따른 Epoxy 복합재료의 표면 소수성증가에 관한 해석)

  • Lim, Kyung-Bum;Lee, Beak-Su;Chung, Mu-Yong;Lee, Duck-Chool
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.4
    • /
    • pp.153-160
    • /
    • 2001
  • In order to analyze the degradation process of epoxy/glass fiber for outdoor condition, FRP laminate was exposed to high temperature. Then, the degradation process was evaluated by comparing contact angle, surface potential, surface resistivity, and XPS. The experimental results showed that the amount of weight loss, contact angle, surface potential and surface resistivity increased up to 200 $^{\circ}C$ as a function of temperature. These phenomena show the existence of hydrophobic surface. With the change to the hydrophobic surface and the electrical potential and resistivity on FRP surface increased. In XPS to analyze surface chemical structures, the increased hydrophobicity in thermal increase of unsaturated double bond in carbon chains. Aslo, thermal treatment caused the discoloration on the point of treated surface. These phenomena were attributed to the generations of ether group.

  • PDF

Influence of different fatigue loads and coating thicknesses on service performance of RC beam specimens with epoxy-coated reinforcement

  • Wang, Xiao-Hui;Gao, Yang;Gao, Run-Dong;Wang, Jing;Liu, Xi-La
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.243-256
    • /
    • 2017
  • Epoxy-coated reinforcing bars are widely used to protect the corrosion of the reinforcing bars in the RC elements under their in-service environments and external loads. In most field surveys, it was reported that the corrosion resistance of the epoxy-coated reinforcing bars is typically better than the uncoated bars. However, from the experimental tests conducted in the labs, it was reported that, under the same loads, the RC elements with epoxy-coated reinforcing bars had wider cracks than the elements reinforced with the ordinary bars. Although this conclusion may be true considering the bond reduction of the reinforcing bar due to the epoxy coating, the maximum service loads used in the experimental research may be a main reason. To answer these two phenomena, service performance of 15 RC beam specimens with uncoated and epoxy-coated reinforcements under different fatigue loads was experimentally studied. Influences of different coating thicknesses of the reinforcing bars, the fatigue load range and load upper limit as well as fatigue load cycles on the mechanical performance of RC test specimens are discussed. It is concluded that, for the test specimens subjected to the comparatively lower load range and load upper limit, adverse effect on the service performance of test specimens with thicker epoxy-coated reinforcing bars is negligible. With the increments of the coating thickness and the in-service loading level, i.e., fatigue load range, load upper limit and fatigue cycles, the adverse factor resulting from the thicker coating becomes noticeable.

Quality Improvement Using Taguchi Method (다구찌 기법 이용으로 품질개선)

  • 이기영
    • Journal of the Korean Professional Engineers Association
    • /
    • v.33 no.1
    • /
    • pp.83-88
    • /
    • 2000
  • Taguchi developed and provided various independent methods for actual application in design of experiments. Taguchi method is described in philosophy, method and others related to quality management. This thesis is one of case studies for improving the bond strength of epoxy resin by Taguchi method which is applied as a optimum developing tool in six sigma management revolution in many companies.

  • PDF

Experimental bond behavior of hybrid rods for concrete reinforcement

  • Nanni, Antonio;Nenninger, Jeremy S.;Ash, Kenneth D.;Liu, Judy
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.339-353
    • /
    • 1997
  • Fiber reinforced plastic (FRP) rods provide certain benefits over steel as concrete reinforcement, such as corrosion resistance, magnetic and electrical insulation, light weight, and high strength. FRP composites can be combined with a steel core to form hybrid reinforcing rods that take advantage of properties of both materials. The objective of this study was to characterize the bond behavior of hybrid FRP rods made with braided epoxy-impregnated aramid or poly-vinyl alcohol FRP skins. Eleven rod types were tested using two concrete strengths. Specific topics examined were bond strength, slip, and type of failure in concentric pull-out tests from concrete cubes. From analysis of identical pull-out tests on both hybrid and steel rods, information on relative bond strength and behavior were obtained. It is concluded that strength is similar but slip in hybrid rods is much higher. Hybrid rods failed either by pull-out or splitting the concrete block (with or without yielding of the steel core). Experimental data showed consistency with similar test results presented in the literature.

A Proposal of Simplified Bond Stress-Slip Model between FRP Plank and Cast-In-Place Concrete (FRP 판과 현장타설 콘크리트 사이의 단순 부착모델 제안)

  • Yoo, Seung-Woon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.65-72
    • /
    • 2008
  • The use of hybrid FRP-concrete structures with a dual purpose of both permanent formwork and reinforcement, has been considered in some studies recently. For the FRP plank and the concrete to act as a composite structural member a satisfactory bond at the interface between the smooth surface of the pultruded plank and the cast-in-place concrete must be developed. Sand was bonded to the pultruded FRP plank using a commercially available epoxy system. In applying general analysis techniques to evaluate the performance of composite structures with FRP stay-in-place forming, it is essential that characteristics of the bond stress-slip relation be identified. In this study I would like to propose a simplified bilinear bond stress-slip model for FRP composite structures.

EVALUATION OF FLEXURAL BOND PERFORMANCE IN R.C BEAM USING 3-TYPES ANTI-CORROSION COATINGS (철근방식을 위한 도포제 종류에 따른 R.C 보의 휨 부착성능 평가)

  • 이태규;이웅종;김종우;이종렬;신도철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.129-133
    • /
    • 1995
  • The purpose of this study is to evaluate the flexural bond performance in beam using 3-types anti-corrosion coatings. For the test. we used $15\times\times20\times110cm$ R.C beams, in which the epoxy, the red lead, and the cementitious anti-corrosion coating re-bars used. The results of test using these 3-type anti-corrosion coatings are shown that the flexural bond performance of cementitious anti-corrosion coating rebar in R.C beam is superior to other anti-corrosion coatings rebars.

  • PDF

Strengthening Effects of R.C. Beams using Externally attached CFRP Composites with Bond[ Details (CFRP로 보강된 RC보의 부착상세에 따른 보강효과)

  • 박종섭;박영환;조정래;유영준;정우태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.591-596
    • /
    • 2003
  • Many studies have dealt with strengthening by epoxy-bonded CFRP(Carbon Fiber Reinforced Polymer) composites. However, the effects of various influencing factors have not been clarified on the behavior of strengthened RC beams. This study was performed to verify the effects of strengthening due to various bond details of externally attached CFRP Composites. In this study, major test parameters include the bond type and the anchor type. The deflections, failure load, strain of reinforcing bar, concrete and CFRP are measured at each loading step. The failure mode and debonding loads(ultimate loads) are analysed from these measured data. According to the test results, all specimens are failed by intermediate flexural crack induced interfacial debonding.

  • PDF

A Study on the Bond Strength of Coated Rebar in Concrete (콘크리트중 코팅철근의 부착응력에 대한 기초적 연구)

  • 문한영;김성수;류재석;김성섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.127-132
    • /
    • 1996
  • Recently in the country a corrosion of steel is accelerated due to using of sea sand including salts, and critical problem on the durability of concrete structure is occured. Thus a control of steel corrosion is very important in the stability of structure. Coated steel is in use with a method of steps of steel corrosion in U.S,A. Japan etc, and as well in domestic case the manufactured coating steel of three types is on the market. Those are Epoxy coated steel, Zinc-strength, concrete specimen size, bar diameter, which can affect bond characteristics between steel and concrete in order to know their relative bond characteristics.

  • PDF

A Molecular Dynamics Simulation Study on Hygroelastic behavior of Thermosetting Epoxy (열경화성 에폭시 기지의 흡습탄성 거동에 관한 분자동역학 전산모사)

  • Kwon, Sunyong;Lee, Man Young;Yang, Seunghwa
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.371-378
    • /
    • 2017
  • In this study, hygroelastic behavior of thermosetting epoxy is predicted by molecular dynamics simulations. Since consistent exposures to humid environments lead to macroscopic degradation of polymer composite, computational simulation study of the hygroscopically aged epoxy cell is essential for long-time durability. Therefore, we modeled amorphous epoxy molecular unit cell structures at a crosslinking ratio of 30, 90% and with the moisture weight fraction of 0, 4 wt% respectively. Diglycidyl ether of bisphenol F (EPON862) and triethylenetetramine (TETA) are chosen as resin and curing agent respectively. Incorporating equilibrium and non-equilibrium ensemble simulation with a classical interatomic potential, various hygroelastic properties including diffusion coefficient of water, coefficient of moisture expansion (CME), stress-strain curve and elastic modulus are predicted. To establish the structural property relationship of pure epoxy, free volume and internal non-bond potential energy of epoxy are examined.