• Title/Summary/Keyword: epoxidized soybean oil (ESO)

Search Result 12, Processing Time 0.02 seconds

Preparation of Cellulose Diacetate/Ramie Fiber Biocomposites by Melt Processing (용융가공법을 이용한 셀룰로오스 디아세테이트/라미섬유 천연복합체의 제조)

  • Lee Sang Hwan;Lee Sang Yool;Nam Jae Do;Lee Youngkwan
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.70-74
    • /
    • 2006
  • Plasticized cellulose diacetate(CDA) was prepared by homogenizing cellulose diacetate(CDA), triacetin(TA) and epoxidized soybean oil (ESO) in a high-speed mixer, then the CDA mixture was mixed with ramie fiber to produce a green composite material. In DMA analysis, the glass transition temperature of plasticized CDA and the composite was observed at $85\;^{\circ}C\;and\;140\;^{\circ}C$, respectively. A composite reinforced with alkali treated ramie fiber exhibited significantly higher mechanical properties, such as $15\;^{\circ}C$ increase in tensile strength as well as $41\;^{\circ}C$ increase in Young's modulus when compared with commercial polypropylene. In the SEM image analysis, much enhanced adhesion between plasticized CDA and alkali treated ramie fiber (AIRa) was observed.

Effect of Zeolite Filler on the Thermal and Mechanical Properties of Cellulose Diacetate (Cellulose Diacetate의 열적 및 기계적 물성에 미치는 Zeolite 충전효과)

  • Lee, Chang-Kyu;Cho, Mi-Suk;Kim, In-Hoi;Nam, Jae-Do;Lee, Young-Kwan
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.243-247
    • /
    • 2009
  • Cellulose diacetate (CDA) was plasticized with triacetine (TA) and epoxidized soybean oil (ESO) in a high speed mixer. Composites of plasticized CDA and zeolite were prepared by a melting process. The $T_g$ value, $106^{\circ}C$ of the plasticized CDA was confirmed by DMA analysis. The $T_g$ value of the CDA with 50% zeolite was $125^{\circ}C$. As the content of zeolite was increased from 10 to 50% the modulus of the composite was increased from 1.7to 3.6 GPa by two times over the plasticized CDA, and its tensile strength was increased to 62 MPa and then decreased down 51 MPa, and its elongation was increased to 10% and then decreased down 3.2%. In the SEM image, the compatibility between CDA and zeolite was observed. Increasing the amount of zeolite in the composites resulted in further enhancement of the $CH_3COOH$ absorption effects.