• Title/Summary/Keyword: epoxidized soybean oil (ESO)

Search Result 12, Processing Time 0.02 seconds

Synthesis of Epoxidized Soybean Oil (ESO) and its Blends with Tetrafunctional Epoxy Resins (Epoxidized soybean oil(ESO)의 합성 및 4 관능성 에폭시 수지/ESO 블렌드 시스템의 물성)

  • Lee, Jae-Rock;Jin, Fan-Long;Park, Soo-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.180-183
    • /
    • 2003
  • In this work. a potential inexpensive epoxy resin. epoxidized soybean oil (ESO) was synthesized and applied as a toughening agent for 4.4'-tetradiglycidyl diaminodiphenyl methane (TGDDM). The chemical structure of ESO was characterized by FT-IR, $^1H NMR, and ^{13}C NMR$ spectroscopy. The curing behaviors. thermal stabilities. fracture toughness. and flexural strength of TGDDM/ESO blend systems were investigated by using the dynamic DSC. thermogravimetric analysis (TGA). and flexural tests. The thermal stabilities of TGDDM/ESO blend systems were decreased with increasing ESO contents. whereas the critical stress intensity factor ($K_{IC}$) and flexural strength ($\sigma_f$) were increased with ESO contents up to 10 wt% ESO.

  • PDF

Preparation and Characterization of PBAT/OTPS Blend Films with Epoxidized Soybean Oil (ESO) for Eco-friendly Packaging Application

  • Jina Song;Sangwoo Kwon;Su-il Park
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.9-14
    • /
    • 2023
  • The application of starch-based films is limited by the poor water vapor barrier and mechanical properties. In this study, plasticized octenyl-succinated corn starch (OTPS) was mixed into Poly (butylene adipate-co-terephthalate) (PBAT) with various concentration (0/0.25/0.5/0.75 wt%) of epoxidized soybean oil (ESO) to enhance the mechanical properties and the hydrophobicity of blends. Tensile Strength and elongation at break of PBAT/OTPS film was slightly strengthened as the added ratio of ESO raised to 0.5 wt%, yet lessened again in 0.75 wt% sample. The yield strength and elastic modulus were highest in 0.25wt% of ESO added. In thermal properties, the melting temperature (Tm) and crystallization temperature (Tc) were highest at ESO 0.25 and the maximum degradation temperature (Tmax) of components of the films were developed as ESO added. Also, it has been proved that the addition of hydrophobic substances reduces the hydrophilicity of the film by contact angle. This suggests the use of epoxidized oil for preparing films based on high TPS content allows obtaining enhanced interfacial adhesion. This study confirmed that ESO acts as a compatibilizer between OTPS and PBAT to improve the mechanical properties and hydrophobicity of the sample. The sample containing 0.5wt% of ESO was the most suitable for packaging application.

New Bio-based Polymeric Materials from Plant Oils

  • Uyama, Hiroshi
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.359-359
    • /
    • 2006
  • This study deals with development of new bio-based polymeric materials from epoxidized soybean oil (ESO). The curing of ESO in the presence of organophilic montmorillonite produced an oil polymer-clay nanocomposite ("green nanocomposite") showing flexible property. A green nanocomposite (oil polymer-silica nanocomposite) coatings were synthesized by an acidcatalyzed curing of ESO with 3-glycidoxypropyltrimethoxysilane. The curing of ESO in the presence of a biodegradable plastic, poly(caprolactone), produced a composite with semi-IPN structure. The mechanical properties of the composite was much superior to those of polyESO. These new oil-based materials have large potential for applications in various fields.

  • PDF

Potential Application of Radiation Curing of Future Nano and Advanced Composites in Korea (한국의 미래 나노 및 고성능 복합재료에 있어서의 광경화 기술의 응용가능성)

  • 이재락;김영근;박수진;서민강;김영미;이화영;김범룡
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.103-106
    • /
    • 2003
  • In this work the novel potential epoxy resins, were synthesized and acrylated. Their structures were confirmed by means of FTIR, $^1H NMR, and^{13}/C NMR$ spectroscopies. Also, we were to note the effect of W curing on functional group changes of VE/UP blend system after UV curing.

  • PDF

Synthesis and Characterization of Bio-Elastomer Based on Vegetable Oils (식물성 오일 기반 바이오 탄성체의 합성과 특성)

  • Lee, Hyeok;Kwak, Kyung-Hwan;Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.47 no.1
    • /
    • pp.30-35
    • /
    • 2012
  • Novel bio-polybutadiene polymers with controlled molecular weight (MW), MW distribution, chemical composition and micro structure were synthesized by a living anionic polymerization of butadiene and the subsequent coupling reaction of the thus obtained living polybutadiene and a vegetable oil. Anionic polymerization of butadiene was carried out in THF solvent using n-BuLi initiator. The resulting living polybutadienyllithium polymer was then reacted with epoxidized soybean oil (ESO) to obtain a star-polymer of polybutadiene and vegitable oil. Three different bio-elastomers were prepared by coupling living polybutadienes of MWs 1000, 5000 and 1000g/mol with ESO. The molecular structure and MW of the polybutadienes and bioelastomers were characterized by $^1H$-NMR, FTIR and GPC techniques.

Preparation and Properties of Plasticized Cellulose Diacetate Using Triacetine/Epoxidized Soybean Oil (트리아세틴/ESO를 이용한 가소화 셀룰로오스 디아세테이트의 제조 및 물성)

  • Lee, Sang-Hwan;Lee, Sang-Yool;Lim, Hwan-Kyu;Nam, Jae-Do;Kye, Hyoung-San;Lee, Young-Kwan
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.202-206
    • /
    • 2006
  • The plasticized cellulose diacetate (CDA) was prepared by melt processing methods using triacetine (TA) as a plasticizer. Additionally, processability of CDA was enhanced by using epoxidized soybean oil as a secondary plasticizer. The glass transition temperature of plasticized CDA was observed at $50^{\circ}C$ lower than virgin CDA and the incorporation of 5% ESO also resulted in the additional $20^{\circ}C$ decrease in the $T_g$. The tensile properties and modulus of plasticized CDA were better than commercial PP and PLA. The aerobic biodegradability of CDA in controlled compositing condition resulted in 90% of degradation during 60 days.

Synthesis and Plasticity of Cyclic Ester Compounds Using Fatty Acids (지방산을 이용한 고리형 에스터 화합물의 합성 및 그의 가소 특성 연구)

  • Han-Na Lee;Hye-Jin Jang;Je-Wan Woo
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.252-257
    • /
    • 2023
  • In this study, to replace phthalate-based plasticizers known as endocrine disruptors, compounds as plasticizer candidates were synthesized by using alcohols containing rings and fatty acids extracted from animal and vegetable oils, and their properties as plasticizers, including their plasticization efficiency, were evaluated. Nine compounds synthesized by esterification of fatty acids (caprylic acid, capric acid, lauric acid) and alcohols (solketal, benzyl alcohol, cyclohexanol) were identified by 1H-NMR. The nine synthetic compounds were evaluated for their plasticity by adding them to PVC resin, and compared with the commercial plasticizers DEHP, DINCH, and ESO. According to the results, plasticization efficiency was 0.96 to 1.02 times higher than DEHP, 0.94 to 0.98 times higher than ESO, and 1.05 to 1.10 times higher than DINCH. Thermal stability was somewhat lower than that of DEHP and DINCH, but showed better results than ESO. The results of the solvent extraction test showed that both aqueous and oily solvents showed higher values than DEHP and DINCH but showed similar or superior properties to ESO.

Micro Pulverization and Surface Modification of Biomass Byproducts for Developing Bio-Degradable Plastic Film (생분해 플라스틱 필름 제조를 위한 바이오매스 부산물의 분체화 및 표면개질 연구)

  • Chung, Sung Taek;Han, Jung-Gu;Lee, Roun;Kim, Pan-Chae;Kuk, YoungRye;Choi, ChunHoan;Park, Hyung Woo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.1
    • /
    • pp.23-30
    • /
    • 2022
  • This study investigated the characteristics for rice husk pulverization and surface modification of biomass byproducts composed of rice husk, corn extract gourd, wheat bran, and soybean curd. The size of particles of rice husk was at 6.44 ㎛ and represented the most affordable material for preparing the bio-degradable film among the tested byproducts. The silane treatment and adding 2% of ESO (Epoxidized soybean oil) and 3-aminopropyl triethoxysilane solution mixed in a 1:1 ratio were best to the surface modification and SEM-based particle shape. Above the results, adding 2% of mixed solution after silane treatment of rice husks processed through an air classifying mill (ACM) allows for its use as a raw material of bio-degradable plastic film.

A Study on the Properties of Hollow Silica Microspheres for Controlled-release Pesticide Formulation (농약 방출 조절제 소재로서 실리카 중공 미세구의 물성연구)

  • Jung, Byoung-Soo;Park, Yong-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.4
    • /
    • pp.319-324
    • /
    • 2004
  • Pesticide formulations for controlled release were pepared with hollow silica microspheres. The hollow microsphere, which was obtained through calcination for the core removed after silica coating, showed maximum impregnation of benfuracarb up to 2.7 times of its mass in comparison with those obtained through the other core removal method. The release test of the pesticide formulation, when used with ESO(Epoxidized Soybean Oil) as a binder, showed ideal release pattern with steady release rate from the day 10 to 30 retaining the benfuracarb concentration in the water around 1.65 ppm.

Nanocomposite of Ethyl Cellulose Using Environment-Friendly Plasticizer (친환경 가소제를 첨가한 에틸 셀룰로오스 나노복합체)

  • Choi Sung Heon;Cho Mi Suk;Kim Dukjoon;Kim Ji-Heung;Lee Dong Hyun;Shim Sang Joon;Nam Jae-Do;Lee Youngkwan
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.399-402
    • /
    • 2005
  • In this study, ethyl cellulose (EC)/montmorilloniote(MMT) nanocomposite films plasticized with environmental-friendly plasticizer (BET, EBN, ESO) were prepared by melt process using Hakke mixer. The $T_g$ of plasticized EC films decreased from 122 to $71^{circ}C$ with the increase in the BET content up to 30 $wt\%$. The addition of 10 $wt\%$ epoxidized soybean oil (ESO) as the second plasticizer cause the further drop of $T_g$ from 81 to $61^{circ}C$. The plasticizer-effect of BET was better than that of EBN. When the plasticizer was added into the EC films, the mechanical properties of EC films was decreased, however the addition of monotmorillonite (MMT) into the EC films or the ring opening reaction of ESO plasticizer cause enhancement of mechanical properties.