• Title/Summary/Keyword: epithelial-to-mesenchymal transition

Search Result 173, Processing Time 0.029 seconds

Effect of Korean Red Ginseng extract on colorectal lung metastasis through inhibiting the epithelial-mesenchymal transition via transforming growth factor-β1/Smad-signaling-mediated Snail/E-cadherin expression

  • Kee, Ji-Ye;Han, Yo-Han;Mun, Jeong-Geon;Park, Seong-Hwan;Jeon, Hee Dong;Hong, Seung-Heon
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.68-76
    • /
    • 2019
  • Background: In colorectal cancer (CRC), 40-60% of patients develop metastasis. The epithelial-mesenchymal transition (EMT) is a pivotal and intricate process that increases the metastatic potential of CRC. The aim of this study was to investigate the effect of Korean Red Ginseng extract (RGE) on colorectal metastasis through inhibition of EMT and the metastatic abilities of CRC cells. Methods: To investigate the effect of RGE on the metastatic phenotypes of CRC cells, CT26 and HT29 cells were evaluated by using an adhesion assay, a wound-healing assay, an invasion assay, zymography, and real-time reverse transcription-polymerase chain reaction. Western-blot analysis was conducted to elucidate the molecular mechanisms of RGE, which showed an inhibitory effect on the transforming growth factor-${\beta}1$ ($TGF-{\beta}1$)-induced EMT in HT29 cells. Additionally, the antimetastatic effect of RGE was evaluated in a mouse model of lung metastasis injected with CT26 cells. Results: RGE decreased the adhesion and migration ability of the CT26 cells and TGF-${\beta}1$-treated HT29 cells. The invasion ability was also reduced by RGE treatment through the inhibition of matrix metalloproteinase-9 expression and activity. Moreover, RGE suppressed the TGF-${\beta}1$-induced EMT via TGF-${\beta}1$/Smad-signaling-mediated Snail/E-cadherin expression in HT29 cells and lung tissue in CT26 tumor-bearing mice. Conclusion: Our results demonstrated that RGE inhibited colorectal lung metastasis through a reduction in metastatic phenotypes, such as migration, invasion, and the EMT of CRC cells.

ACY-241, a histone deacetylase 6 inhibitor, suppresses the epithelial-mesenchymal transition in lung cancer cells by downregulating hypoxia-inducible factor-1 alpha

  • Seong-Jun Park;Naeun Lee;Chul-Ho Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.83-91
    • /
    • 2024
  • Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor activated under hypoxic conditions, and it plays a crucial role in cellular stress regulation. While HIF-1α activity is essential in normal tissues, its presence in the tumor microenvironment represents a significant risk factor as it can induce angiogenesis and confer resistance to anti-cancer drugs, thereby contributing to poor prognoses. Typically, HIF-1α undergoes rapid degradation in normoxic conditions via oxygen-dependent degradation mechanisms. However, certain cancer cells can express HIF-1α even under normoxia. In this study, we observed an inclination toward increased normoxic HIF-1α expression in cancer cell lines exhibiting increased HDAC6 expression, which prompted the hypothesis that HDAC6 may modulate HIF-1α stability in normoxic conditions. To prove this hypothesis, several cancer cells with relatively higher HIF-1α levels under normoxic conditions were treated with ACY-241, a selective HDAC6 inhibitor, and small interfering RNAs for HDAC6 knockdown. Our data revealed a significant reduction in HIF-1α expression upon HDAC6 inhibition. Moreover, the downregulation of HIF-1α under normoxic conditions decreased zinc finger E-box-binding homeobox 1 expression and increased E-cadherin levels in lung cancer H1975 cells, consequently suppressing cell invasion and migration. ACY-241 treatment also demonstrated an inhibitory effect on cell invasion and migration by reducing HIF-1α level. This study confirms that HDAC6 knockdown and ACY-241 treatment effectively decrease HIF-1α expression under normoxia, thereby suppressing the epithelial-mesenchymal transition. These findings highlight the potential of selective HDAC6 inhibition as an innovative therapeutic strategy for lung cancer.

Epithelial-Mesenchymal Transition-Inducing Factors Involved in the Progression of Lung Cancers

  • Nam, Min-Woo;Kim, Cho-Won;Choi, Kyung-Chul
    • Biomolecules & Therapeutics
    • /
    • v.30 no.3
    • /
    • pp.213-220
    • /
    • 2022
  • Although there have been advances in cancer therapy and surgical improvement, lung cancer has the lowest survival rate (19%) at all stages. This is because most patients are diagnosed with concurrent metastasis, which occurs due to numerous related reasons. Especially, lung cancer is one of the most common and malignant cancers in the world. Although there are advanced therapeutic strategies, lung cancer remains one of the main causes of cancer death. Recent work has proposed that epithelial-mesenchymal transition (EMT) is the main cause of metastasis in most cases of human cancers including lung cancer. EMT involves the conversion of epithelial cells, wherein the cells lose their epithelial abilities and become mesenchymal cells involved in embryonic development, such as gastrulation and neural crest formation. In addition, recent research has indicated that EMT contributes to altering the cancer cells into cancer stem cells (CSCs). Although EMT is important in the developmental stages, this process also activates lung cancer progression, including complicated and diverse signaling pathways. Despite the numerous investigations on signaling pathways involved in the progression of lung cancer, this malignancy is considered critical for treatment. EMT in lung cancer involves many transcription factors and inducers, for example, Snail, TWIST, and ZEB are the master regulators of EMT. EMT-related factors and signaling pathways are involved in the progression of lung cancer, proposing new approaches to lung cancer therapy. In the current review, we highlight the signaling pathways implicated in lung cancer and elucidate the correlation of these pathways, indicating new insights to treat lung cancer and other malignancies.

Correlation of Overexpression of Nestin with Expression of Epithelial-Mesenchymal Transition-Related Proteins in Gastric Adenocarcinoma

  • Liu, Jin-Kai;Chen, Wan-Cheng;Ji, Xiao-Zhen;Zheng, Wen-Hong;Han, Wei;An, Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2777-2783
    • /
    • 2015
  • Background: Nestin is associated with neoplastic transformation. However, the mechanisms by which nestin contributes regarding invasion and malignancy of gastric adenocarcinoma (GAC) remain unknown. Recent studies have shown that the epithelial-mesenchymal transition (EMT) is important in invasion and migration of cancer cells. In the present study, we aimed to investigate the expression of nestin and its correlation with EMT-related proteins in GAC. Materials and Methods: The expression of nestin and EMT-related proteins was examined in GAC specimens and cell lines by immunohistochemistry and Western blotting. Clinicopathological features and survival outcomes were retrospectively analyzed. Results: Positive nestin immunostaining was most obviously detected in the cytoplasm, nucleus or both cytoplasm and nucleus of tumor cells in 19.2% (24/125) of GAC tissues, which was significantly higher than that in normal gastric mucosa tissues (1.7%, 1/60) (p=0.001). Nestin expression was closely related to several clinicopathological factors and EMT-related proteins (E-cadherin, vimentin and Snail) and displayed a poor prognosis. Interestingly, simultaneous cytoplasmic and nuclear nestin expression correlated with EMT-related proteins (E-cadherin, vimentin and Snail) (p<0.05) and lymph node metastasis (p=0.041) and a shorter survival time (p<0.05), but this was not the case with cytoplasmic or nuclear nestin expression. Conclusions: Nestin, particularly expression in both cytoplasm and nucleus, might be involved in regulating EMT and malignant progression in GAC, with potential as an unfavorable indicator in tumor diagnosis and a target for clinical therapy.

KPNA3 promotes epithelial-mesenchymal transition by regulating TGF-β and AKT signaling pathways in MDA-MB-231, a triple-negative breast cancer cell line

  • Jaesung Choi;Jee-Hye Choi;Ho Woon Lee;Dongbeom Seo;Gavaachimed Lkhagvasuren;Jung-Woong Kim;Sang-Beom Seo;Kangseok Lee;Kwang-Ho Lee
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.120-125
    • /
    • 2023
  • Karyopherin-α3 (KPNA3), a karyopherin-α isoform, is intimately associated with metastatic progression via epithelial-mesenchymal transition (EMT). However, the molecular mechanism underlying how KPNA3 acts as an EMT inducer remains to be elucidated. In this report, we identified that KPNA3 was significantly upregulated in cancer cells, particularly in triple-negative breast cancer, and its knockdown resulted in the suppression of cell proliferation and metastasis. The comprehensive transcriptome analysis from KPNA3 knockdown cells indicated that KPNA3 is involved in the regulation of numerous EMT-related genes, including the downregulation of GATA3 and E-cadherin and the up-regulation of HAS2. Moreover, it was found that KPNA3 EMT-mediated metastasis can be achieved by TGF-β or AKT signaling pathways; this suggests that the novel independent signaling pathways KPNA3-TGF-β-GATA3-HAS2/E-cadherin and KPNA3-AKT-HAS2/E-cadherin are involved in the EMT-mediated progress of TNBC MDA-MB-231 cells. These findings provide new insights into the divergent EMT inducibility of KPNA3 according to cell and cancer type.

Anticancer effects of D-pinitol in human oral squamous carcinoma cells

  • Shin, Hyun-Chul;Bang, Tea-Hyun;Kang, Hae-Mi;Park, Bong-Soo;Kim, In-Ryoung
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.152-161
    • /
    • 2020
  • D-pinitol is an analog of 3-methoxy-D-chiro-inositol found in beans and plants. D-pinitol has anti-inflammatory, antidiabetic, and anticancer effects. Additionally, D-pinitol induces apoptosis and inhibits metastasis in breast and prostate cancers. However, to date, no study has investigated the anticancer effects of D-pinitol in oral cancer. Therefore, in this study, whether the anticancer effects of D-pinitol induce apoptosis, inhibit the epithelial-to-mesenchymal transition (EMT), and arrest cell cycle was investigated in squamous epithelial cells. D-pinitol decreased the survival and cell proliferation rates of CAL-27 and Ca9-22 oral squamous carcinoma cells in a concentration- and time-dependent manner. Evidence of apoptosis, including nuclear condensation, poly (ADP-ribose) polymerase, and caspase-3 fragmentation, was also observed. D-pinitol inhibited the migration and invasion of both cell lines. In terms of EMT-related proteins, E-cadherin was increased, whereas N-cadherin, Snail, and Slug were decreased. D-pinitol also decreased the expression of cyclin D1, a protein involved in the cell cycle, but increased the expression of p21, a cyclin-dependent kinase inhibitor. Hence, D-pinitol induces apoptosis and cell cycle arrest in CAL-27 and Ca9-22 cells, demonstrating an anticancer effect by decreasing the EMT.

Cardamonin Suppresses TGF-β1-Induced Epithelial Mesenchymal Transition via Restoring Protein Phosphatase 2A Expression

  • Kim, Eun Ji;Kim, Hyun Ji;Park, Mi Kyung;Kang, Gyeung Jin;Byun, Hyun Jung;Lee, Ho;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.141-148
    • /
    • 2015
  • Epithelial mesenchymal transition (EMT) is the first step in metastasis and implicated in the phenotype of cancer stem cells. Therefore, understanding and controlling EMT, are essential to the prevention and cure of metastasis. In the present study, we examined, by Western blot, reverse transcription polymerase chain reaction (RT-PCR), and confocal microscopy, the effects of cardamonin (CDN) on transforming growth factor-${\beta}1$ (TGF-${\beta}1$)-induced EMT of A549 lung adenocarcinoma cell lines. TGF-${\beta}1$ induced expression of N-cadherin and decreased expression of E-cadherin. CDN suppressed N-cadherin expression and restored E-cadherin expression. Further, TGF-${\beta}1$ induced migration and invasion of A549 cancer cells, which was suppressed by CDN. TGF-${\beta}1$ induced c-Jun N-terminal kinase (JNK) activation during EMT, but CDN blocked it. Protein serine/threonine phosphatase 2A (PP2A) expression in A549 cancer cells was reduced by TGF-${\beta}1$ but CDN restored it. The overall data suggested that CDN suppresses TGF-${\beta}1$-induced EMT via PP2A restoration, making it a potential new drug candidate that controls metastasis.

Silymarin Attenuates Invasion and Migration through the Regulation of Epithelial-mesenchymal Transition in Huh7 Cells (간암세포주에서 상피간엽전환억제를 통한 Silymarin의 침윤 및 전이 억제 효과)

  • Kim, Do-Hoon;Park, So-Jeong;Lee, Seung-Yeon;Yoon, Hyun-Seo;Park, Chung Mu
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.3
    • /
    • pp.337-344
    • /
    • 2018
  • Hepatocellular carcinoma (HCC), a major type of hepatoma, is associated with high recurrence and mortality because of its uncontrolled metastatic feature. Silymarin is a polyphenolic flavonoid from Silybum marianun (milk thistle) and exhibits anti-carcinogenic activity through modulation of the epithelial-mesenchymal transition (EMT) in several cancer cells. In this study, the inhibitory mechanism of silymarin against migration and invasion was investigated in the Huh7 HCC cell line. Wound healing and in vitro invasion assays were conducted to examine the effects of silymarin on migration and invasion. Western blot analysis was also applied to evaluate the inhibitory effects of silymarin on the EMT-related genes and their upstream signaling molecules. Silymarin inhibited the migratory and invasive activities of Huh7 cells. In addition, silymarin attenuated the protein expression levels of vimentin and matrix metalloproteinase (MMP)-9 as well as their transcription factors, Snail, and nuclear factor $(NF)-{\kappa}B$, while the expression of E-cadherin was increased by the silymarin treatment. Among the upstream signaling molecules, the phosphorylation of Akt was inhibited by the silymarin treatment, which was confirmed by the selective inhibitor, LY294002. Consequently, silymarin inhibited the invasive and migratory activities in Huh7 cells through the modulation of EMT-related gene expression by the PI3K/Akt signaling pathway, which may have potential as a chemopreventive agent against HCC metastasis.

Epithelial to Mesenchymal Transition in CAPD Patients (복막의 섬유화 기전으로서의 상피중간엽전이)

  • Do, Jun-Young
    • Journal of Yeungnam Medical Science
    • /
    • v.23 no.1
    • /
    • pp.10-18
    • /
    • 2006
  • Epithelial to mesenchymal transition (EMT) is an important etiologic factor for the development of peritoneal fibrosis in CAPD patients. Mesothelial cells are main source of trans-differentiated fibroblasts under stress from the bioincompatible peritoneal dialysate. In our study there was no difference in dialysate TGF-${\beta}$ and VEGF between the low and high GDP groups during an initial 12 months. However, after adjusting with D-CA125, the low GDPs group showed a significantly lower D-TGF-${\beta}$/D-CA125 and D-VEGF/CA125 during the initial 12 months. Among the adjusted peritoneal growth factors for CA125, VEGF/CA125 and TGF-b/CA125 were factors significantly associated with greater EMT in this study. Adjustment of the peritoneal growth factor for effluent CA125 (surrogate for mass of HPMCs) revealed significant association with EMT suggesting that the fibroblastoid transition from HPMCs could be affected by the amount of intraperitoneal growth factors (TGF-b, VEGF) per unit mass of HPMCs. There was significant improvement in both cell score and D-CA125 at the sixth and 12th months after switching from a high GDPs solution to a low GDPs solution. Use of icodextrin solution in patients who had average peritoneal transport showed not only better systemic effects such as decreased glucose absorption via dialysate but also preservation of the peritoneum, including less EMT and high mesothelial bulk mass. In conclusion, Therapy with low GDP solution including icodextrin may positively impact preservation of the peritoneal membrane integrity and prevention of peritoneal fibrosis with time on PD.

  • PDF

Suppression of the Epidermal Growth Factor-like Domain 7 and Inhibition of Migration and Epithelial-Mesenchymal Transition in Human Pancreatic Cancer PANC-1 Cells

  • Wang, Yun-Liang;Dong, Feng-Lin;Yang, Jian;Li, Zhi;Zhi, Qiao-Ming;Zhao, Xin;Yang, Yong;Li, De-Chun;Shen, Xiao-Chun;Zhou, Jin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.4065-4069
    • /
    • 2015
  • Background: Epidermal growth factor-like domain multiple 7 (EGFL7), a secreted protein specifically expressed by endothelial cells during embryogenesis, recently was identified as a critical gene in tumor metastasis. Epithelial-mesenchymal transition (EMT) was found to be closely related with tumor progression. Accordingly, it is important to investigate the migration and EMT change after knock-down of EGFL7 gene expression in human pancreatic cancer cells. Materials and Methods: EGFL7 expression was firstly testified in 4 pancreatic cancer cell lines by real-time polymerase chain reaction (Real-time PCR) and western blot, and the highest expression of EGFL7 was found in PANC-1 cell line. Then, PANC-1 cells transfected with small interference RNA (siRNA) of EGFL7 using plasmid vector were named si-PANC-1, while transfected with negative control plasmid vector were called NC-PANC-1. Transwell assay was used to analyze the migration of PANC-1 cells. Real-time PCR and western blotting were used to detect the expression change of EGFL7 gene, EMT markers like E-Cadherin, N-Cadherin, Vimentin, Fibronectin and transcription factors like snail, slug in PANC-1, NCPANC-1, and si-PANC-1 cells, respectively. Results: After successful plasmid transfection, EGFL7 gene were dramatically knock-down by RNA interference in si-PANC-1 group. Meanwhile, migration ability decreased significantly, compared with PANC-1 and NC-PANC-1 group. Meanwhile, the expression of epithelial phenotype marker E-Cadherin increased and that of mesenchymal phenotype markers N-Cadherin, Vimentin, Fibronectin dramatically decreased in si-PANC-1 group, indicating a reversion of EMT. Also, transcription factors snail and slug decreased significantly after RNA interference. Conclusions: Current study suggested that highly-expressed EGFL7 promotes migration of PANC-1 cells and acts through transcription factors snail and slug to induce EMT, and further study is needed to confirm this issue.