• Title/Summary/Keyword: epiphytic microorganisms

Search Result 4, Processing Time 0.021 seconds

Additive Effects of Green Tea on Fermented Juice of Epiphytic Lactic Acid Bacteria (FJLB) and the Fermentative Quality of Rhodesgrass Silage

  • Burrenok, Smerjai;Tamaki, Masanobu;Kawamoto, Yasuhiro;Nakada, Tadashi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.920-924
    • /
    • 2007
  • Two experiments were carried out on a laboratory scale. The first involved a study of the effect of green tea on characteristics of fermented juice of epiphytic lactic acid bacteria (FJLB). FJLB was treated with 50 g/L of green tea products as follows: new shoot powder (FJLB+N), leaf powder (FJLB+L), commercial powder (FJLB+P), sterilized new shoot powder (FJLB+SN), sterilized leaf powder (FJLB+SL) or sterilized commercial powder (FJLB+SP). FJLB without any additive was also prepared (Untreated FJLB). After incubation, the number of microorganisms in FJLB were studied. Subsequently, these FJLB were applied at 10 ml/kg to chopped rhodesgrass to study their effects on fermentation. Compared with untreated FJLB, the addition of green tea increased (p<0.05) lactic acid bacteria (LAB) and also aerobic bacteria counts in FJLB. At 60 d of ensiling, all the FJLB treated silages were well preserved, pH and butyric acid content were lower (p<0.001) and lactic acid was higher (p<0.001) than that of the control. Lactic acid content was significantly higher (p<0.001) with treated FJLB than with untreated FJLB. FJLB treated with sterilized green tea decreased (p<0.001) the pH and the lactic acid content was higher (p<0.001) than that in the unsterilized green tea silages.

Ecological Characteristics of the Epiphytes on Seagrass - I. Variations of the Epiphytic Community and Biomass Related to the Host Plant ($Zostera$ $marina$ (eelgrass) (해초에 부착하는 부착생물 군집의 생태학적 특성 - I. 잘피 ($Zostera$ $marina$ L.)의 성장에 따른 부착생물의 군집 변화)

  • Chung, Mi-Hee;Youn, Seok-Hyun
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.4
    • /
    • pp.362-372
    • /
    • 2011
  • The relationships among total epiphytes, algal epiphytes and eelgrass ($Zostera$ $marina$ L.) were studied at eelgrass medows from July, 1998 to July, 1999 in Yulim-ri, Yeosu, Korea. Epiphytic diatoms on eelgrass leaves were observed from July to December 1998. From the results of this study, we inferred the following three (3) conclusions : 1) As eelgrass grew older, biomass of epiphytes increased, according to relationships between the leaf length and area of eelgrass and biomass (DW, AFDW and Chl. $a$) of epiphytes. 2) According to the ratio of dry weight, ash-free dry weight and Chlorophyll of epiphytes, the algae with calcareous or siliceous skeletons, such as coralline algae or diatoms, were dominated in the epitphytic algae community. 3) The autotrophic index (AI) calculated from AFDW and Chl. $a$ of epiphytes varied from 151 to 375. However, the period of autotrophic community was shorter than heterotrophic community and the value of AI was high. From these results, we inferred that heterotrophic community, including detritus or microorganisms were dominated in the most of research period.

Cultivation of Nostoc flagelliforme on Solid Medium

  • Su Jianyu;Jia Shiru;Qiao Changsheng;Kim Jung-Gyu;Hong Wan-Hae;Cho Ki-An;Choi DuBok
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.2 s.58
    • /
    • pp.135-140
    • /
    • 2005
  • In order to construct an artificial cultivation of Nostoc flagelliforme on solid medium, we attempted to assess the viability of approaches, which utilized either BG-11 agar or sand medium using both sterile and non-sterile algal segments. In the trial in which the BG -11 agar medium was inoculated with the non-sterile algal segments, the algae exhibited the rapid growth in the initial 4 days of cultivation. However, after 4 days of cultivation, the growth rate of the algae slowed, and the algal growth was completely stopped by 7 days of cultivation. When the BG -11 medium was inoculated with the sterile algal segments, the algae exhibited the rapid growth for a longer period of 8 days, reaching a length of 24.9 mm. The growth rate during this period was measured to be $24.5\%$. After the 8 days of cultivation, the algal growth rate began to slow and had almost stopped by the 13 days of cultivation. On the other hand, when the sterile algal segments were inoculated onto a sand plate, the algal segments decomposed, reaching total decomposition after 11 days of cultivation. By way of contrast, the desiccation treatment samples continued to grow for 14 days of cultivation. After 14 days of cultivation, the algae achieved a length of 26.1 mm, with a growth rate of $30.6\%$. Our results indicate that periodic desiccation may constitute an effective strategy for the prevention of algal decomposition.

Occurrence and Biological Control of Postharvest Decay in Onion Caused by Fungi

  • Lee, Joon-Taek;Bae, Dong-Won;Park, Seun-Hee;Shim, Chang-Ki;Kwak, Youn-Sig;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.17 no.3
    • /
    • pp.141-148
    • /
    • 2001
  • Postharvest decay of onion bulbs was examined by inspecting the commercial packages in the market or in storage. Bulb rot incidence was unexpectedly high, and onion bulbs with 1st quality grade were rotten most severely by 51%, followed by 32% for 2nd and 21% for 3rd grades. This indicates that larger bulbs had higher incidences of bulb rots. Major pathogens associated with basal and neck rots were Fusarium oxysporum and Aspergillus sp. or Botrytis allii, respectively, of which basal rot was most prevalent and damaging during storage. Among the epiphytic microorgani는 from onion plants, several Bacillus and Paenibacillus spp. and previously selected Pseudomonas putida and Trichoderma harzianum had inhibitory efficacy against bulb rot pathogens. Among these B. amyloliquefaciens BL-3, Paenibacillus polymyxa BL-4, and P. putida Cha 94 were highly inhibitory to conidial germination of F. oxysporum and B. allii. P. putida Cha 94, B. amyloliquefaciens BL-3, P. polymyxa BL-4, and T. harzianum TM were applied in the rhizoplane of onion at transplanting. Initially antagonist populations decreased rapidly during the first one month. However, among these antagonists, rhizoplane population densities of BL-3, Cha 94, and TM were consistently high thereafter, maintaining about 10$^4$-10$^{5}$ cells or spores per gram of onion root up to harvest time. The other bacterial antagonist BL-4 survived only for two months. TM was the most effective biocontrol agent against basal rot, with the number of rotten bulbs recorded at 4%, while that of the control was 16%. Cha 94 was effective for the first 20 days, but basal rot increased thereafter and had about the same control efficacy as that of BL-3 and BL-4. When the antagonists were applied to the topping areas of onion bulbs at harvest, TM was the most effective in protecting the stored onion bulbs from neck rotting. The second effective antagonist was BL-3. TM and BL-3 completely suppressed the neck rot in another test, suggesting that biocontrol of postharvest decay of onion using these microorganisms either at the time of transplanting or at harvesting may be promising.

  • PDF