• Title/Summary/Keyword: epigallocatechin-3-gallate (EGCG)

Search Result 149, Processing Time 0.03 seconds

Prevention of Olanzapine-induced Toxicities of Weight Gain and Inflammatory Reactions by Coadministration with Green Tea or its Major Component Phenolic Epigallocatechin 3-Gallate in Mouse

  • Kim, Chul-Eung;Mo, Ji-Won;Kim, Jin;Kang, Ju-Hee;Park, Chang-Shin
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.127-131
    • /
    • 2007
  • Chronic treatment with olanzapine (OLZ), an atypical antipsychotic drug, is associated with the adverse effects of weight gain, hyperglycemia and/or hypertriglyceridemia. Green tea or epigallocatechin gallate (EGCG), one of the most abundant green tea polyphenols, significantly reduces or prevents an increase in glucose levels, lipid markers and/or body weight. We hypothesized that combined treatment with OLZ and green tea extract (GTE) or EGCG may prevent body weight gain and increase of the lipid markers. ICR male mice weighing an average of 30.51 g (n=32) at the beginning of the experiment were used. OLZ, OLZ+GTE and OLZ+EGCG were administered for 27 d in the drinking water, and then the levels of fasting glucose, nitric oxide (NO), and a typical lipid marker triglyceride (TG) were determined in plasma. The body weight and food intake were also compared. The chronic treatment of OLZ increased the average body weight compared with that of controls. In the presence of GTE or EGCG, the OLZ-induced increase in body weight was significantly prevented. Furthermore, in the OLZ group, the plasma levels of glucose, NO and TG were significantly increased, whereas GTE or EGCG prevented these increases. These results implicate that OLZ may induce systematic inflammatory reaction, and suggest that GTE or EGCG can protect against OLZinduced weight gain, hyperglycemia and hypertriglyceridemia.

Effects of Green Tea Residue Treatment in Eco-Friendly Medium on Growth and Catechin Content of Pleurotus eryngii (친환경 버섯배지에 녹차 잔류물의 처리가 새송이버섯의 생장 및 Catechin류 함량에 미치는 영향)

  • Chon, Sang-Uk;Kim, Young-Min;Yun, Dae-Ryung
    • Korean Journal of Plant Resources
    • /
    • v.20 no.1
    • /
    • pp.38-42
    • /
    • 2007
  • The present study was conducted to investigate the translocation of polyphenols, especially catechin derivatives, from mushroom medium mixed with green tea residues into fruiting body of Pleurotus eryngii. Pleurotus eryngii was grown on the media incorporated by mixing or surface-treated with dry materials including leaf petioles and young stems or leaves of green tea. The dry materials treated in medium did not affect plant height and fresh weight of Pleurotus eryngii body. From the samples of Pleurotus eryngii, the eight main catechin derivatives (-)-gallocatechin(GC), (+)-catechin (C), (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epigallocatechin gallate (EGCG), (-)-gallocatechin gallate (GCG), (-)-epicatechin gallate (ECG), and (-)-catechin gallate (EGCG), and caffeine were analyzed quantitatively by HPLC. The results showed that EGC in Pleurotus eryngii was 45% more detected, when incorporated with the dry materials, than untreated control. Especially, content of EGCG was increased in surface-treated Pleurotus eryngii up to 3.2 ppm, while it was not detected or reduced in control and other treatments. Caffeine content was greatly increased regardless of treatment method, compared with control (0.1ppm), showing 44 fold-amount in Pleurotus eryngii at early growth stage when incorporated with the dry materials into medium. The results indicates that functional catechin derivatives of green tea would be partly translocated into Pleurotus eryngii throught incorporation and surface treatment with residues of green tea plants.

Antithrombotic effect of epigallocatechin gallate on the patency of arterial microvascular anastomoses

  • Igde, Murat;Ozturk, Mehmet Onur;Yasar, Burak;Bulam, Mehmet Hakan;Ergani, Hasan Murat;Unlu, Ramazan Erkin
    • Archives of Plastic Surgery
    • /
    • v.46 no.3
    • /
    • pp.214-220
    • /
    • 2019
  • Background Microvascular anastomosis patency is adversely affected by local and systemic factors. Impaired intimal recovery and endothelial mechanisms promoting thrombus formation at the anastomotic site are common etiological factors of reduced anastomosis patency. Epigallocatechin gallate (EGCG) is a catechin derivative belonging to the flavonoid subgroup and is present in green tea (Camellia sinensis). This study investigated the effects of EGCG on the structure of vessel tips used in microvascular anastomoses and evaluated its effects on thrombus formation at an anastomotic site. Methods Thirty-six adult male Wistar albino rats were used in the study. The right femoral artery was cut and reanastomosed. The rats were divided into two groups (18 per group) and were systemically administered either EGCG or saline. Each group were then subdivided into three groups, each with six rats. Axial histological sections were taken from segments 1 cm proximal and 1 cm distal to the microvascular anastomosis site on days 5, 10, and 14. Results Thrombus formation was significantly different between the EGCG and control groups on day 5 (P=0.015) but not on days 10 or 14. The mean luminal diameter was significantly greater in the EGCG group on days 5 (P=0.002), 10 (P=0.026), and 14 (P=0.002). Intimal thickening was significantly higher on days 5 (P=0.041) and 10 (P=0.02). Conclusions EGCG showed vasodilatory effects and led to reduced early thrombus formation after microvascular repair. Similar studies on venous anastomoses and random or axial pedunculated skin flaps would also contribute valuable findings relevant to this topic.

Assessment of intestinal permeability of EGCG by piperine using Caco-2 cell monolayer system

  • Hwang, Se-hee;Lee, Jin-hee;Kim, Dae-kyong
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.1
    • /
    • pp.35-41
    • /
    • 2020
  • (-)-epigallocatechin-3-gallate (EGGG), a flavonoid found in green tea, is known to have low bioavailability. In this study, we determine whether piperine, a natural bioenhancer, can increase the absorption rate of EGCG. Using a Caco-2 cell monolayer, permeability experiments were performed in Hanks' balanced salt solution (HBSS) and EGCG stability was adjusted to pH 6.5 and pH 5.5 by ascorbic acid treatment. When HBSS was adjusted to pH 6.5, EGCG remained at 94.78% for up to 2 h and remained at 86.04% after 4 h and the net efflux decreased compared to the control. As a result, uptake was significantly increased in the piperine co-administered group compared to the EGCG-alone group, showing that piperine increased the permeability of EGCG in the Caco-2 cell monolayer. These results suggest that piperine inhibits EGCG glucuronidation and efflux, allowing for greater absorption of EGCG.

Epigallocatechin-3-gallate prior to composite resin in abfraction lesions: a split-mouth randomized clinical trial

  • Luisa Valente Gotardo Lara Alves;Lisiane Martins Fracasso;Thiago Vinicius Cortez;Aline Evangelista Souza-Gabriel;Silmara Aparecida Milori Corona
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.2
    • /
    • pp.13.1-13.11
    • /
    • 2023
  • Objectives: Natural extracts have been investigated as a biomimetic strategy to mechanically strengthen the collagen network and control the biodegradation of extracellular matrix. This study evaluated the effect of epigallocatechin-3-gallate (EGCG) on abfraction lesions prior to the composite resin. Materials and Methods: The sample consisted of 30 patients (aged between 28 and 60 years) with abfraction lesions located in 2 homologous premolars. The teeth were randomly assigned according to dentin treatment: 0.02% EGCG solution or distilled water (control). After enamel acid etching, the solutions were applied immediately for 1 minute. The teeth were restored with Universal Adhesive (3M) and Filtek Z350 XT (3M). Analyzes were done by 2 independent examiners using modified USPHS (retention, secondary caries, marginal adaptation, and postoperative sensitivity) and photographic (color, marginal pigmentation, and anatomical form) criteria at baseline (7 days) and final (18 months). The data analysis used Friedman and Wilcoxon signed-rank tests (α = 0.05). Results: At baseline, all restorations were evaluated as alpha for all criteria. After 18 months, restorations were evaluated as alpha for secondary caries, color, and marginal pigmentation. There was significant difference between baseline and 18 months (p = 0.009) for marginal adaptation and postoperative sensitivity (p = 0.029), but no significant difference were verified between treatments (p = 0.433). The EGCG group had a restoration retention rate of 93.3%, while the control group had 96.7%. Conclusions: The application of EGCG solution on abfraction lesions did not significantly influence the survival of the restorations based on clinical and photographic criteria.

Inhibitin of Xanthine Oxidase by Tea Extracts from Green Tea, Oolong Tea and Black Tea (녹차, 오룡차 및 홍차 추출물의 Xanthine Oxidase 억제작용)

  • 김선봉;여생규;박영범;김인수;박영호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.1
    • /
    • pp.154-159
    • /
    • 1995
  • Inhibition of xanthine oxidase by tea extracts obtained from non-fermented tea(steamed green tea and roasted green tea), semi-fermented tea(oolong tea) and fermented tea(black tea) were investigated. The crude catechin fraciton had a hgher inhibitory effect against xanthine oxidase, and the effect was increased with the addition of tea extracts. Their inhibitory effect were hardly influenced until extracted three times with hot water. According to the investigation of catechins in the crude catechin fraction obtained from tea extracts, (-)-epicatechin-(EC), (-)-epicatechin gallate(ECg). (-)-epigallocatechin(EGC) and (-)-epigallocatechin gallate(EGCg) were 80.1$\mu\textrm{g}$/mg 113.5$\mu\textrm{g}$ /mg, 186.3$\mu\textrm{g}$/mg and 367.7$\mu\textrm{g}$/mg in steamed green tea, and 75.6$\mu\textrm{g}$/mg, 114.7$\mu\textrm{g}$/mg, 193.7 $\mu\textrm{g}$/mg and 381.9$\mu\textrm{g}$/mg in roasted green tea, and 69.4$\mu\textrm{g}$/mg, 110.0$\mu\textrm{g}$/mg, 127.1$\mu\textrm{g}$.mg and 464.9$\mu\textrm{g}$/mg in oolong tea, and 78.1$\mu\textrm{g}$/mg, 171.8$\mu\textrm{g}$/mg, 80.7$\mu\textrm{g}$/mg and 51.4$\mu\textrm{g}$/mg in black tea, respectively. Order of the content of these catechins was (-)-EGCg>(-)-EGC>(-)-ECg>(-)-EC in steamed green tea, roasted green tea and oolong tea, and was (-)-ECg>(-)-EGC>(-)-EC>(-)-EGCg in black tea. Also the concentration of catechins was hardly influeced until extracted three times. The inhibition ratio of xanthine oxidase by autherntic catechins was hardly influenced until extracted three times. The inhibition ratio of xanthine oxidase by authentic catechins was 94.9% and 87.6% by addition of 5.0$\mu\textrm{g}$/ml of (-)-EGCg and (-)-ECg, respectively. the inhibitors of xanthine oxidase were supposed to be due to (-)-ECg and (-)-EGCg in tea polyphenol compounds.

  • PDF

Effects of (-)-Epigallocatechin-3-gallate on the Release of Pancreatic Enzymes and Expression of Regenerating Genes in Ethanol-injured Murine Pancreatic Primary Acinar Cells (에탄올에 의하여 유도된 마우스 췌장 선포세포의 염증성 손상에서 췌장분비 효소의 활성 및 세포 재생관련 유전자들의 발현에 미치는 EGCG의 영향)

  • Kim, Sung Ok;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1404-1408
    • /
    • 2013
  • (-)-Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, has been shown to have strong antibacterial, antiviral, antioxidant, anti-inflammatory, and chemopreventive effects. However it is unknown whether EGCG can recover alcohol-associated pancreatitis. The aim of this study was to investigate the effects of EGCG on pancreatic enzyme activities and the expressions of pancreatic regenerating related markers, such as adenosine monophosphate-activated protein kinase (AMPK), raf-1 kinase inhibitor protein (RKIP), and Regenerating gene 1 (Reg1), in mice pancreatic primary acinar cells. Our results revealed that activities of ${\alpha}$-amylase and chymotrypsin were significantly increased in the cells treated with ethanol compared to the untreated control cells; however, the increased activities of both enzymes were markedly reduced by pretreatment with EGCG. Phosphorylation of AMPK and total expression of RKIP were decreased in the ethanol-treated primary acinar cells; however, these were both significantly increased in the EGCG-pretreated cells. In addition, when EGCG was treated, expression of Reg1 was markedly increased compared with that of the control or the ethanol-treated primary acinar cells, demonstrating that EGCG can modulate pancreatic regenerating related genes. Therefore, our findings suggest that EGCG may have therapeutic utility in the prevention or treatment of alcohol-associated pancreatitis.

Green Tea (-)-Epigallotocatechin-3-Gallate Induces PGC-1α Gene Expression in HepG2 Cells and 3T3-L1 Adipocytes

  • Lee, Mak-Soon;Lee, Seohyun;Doo, Miae;Kim, Yangha
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • Green tea (Camellia sinensis) is one of the most popular beverages in the world and has been acknowledged for centuries as having significant health benefits. (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea, and it has been reported to have health benefit effects. Peroxisome proliferator-activated receptor ${\gamma}$ coactivator $(PGC)-1{\alpha}$ is a crucial regulator of mitochondrial biogenesis and hepatic gluconeogenesis. The objective of this study was to investigate whether EGCG from green tea can affect the ability of transcriptional regulation on $PGC-1{\alpha}$ mRNA expression in HepG2 cells and 3T3-L1 adipocytes. To study the molecular mechanism that allows EGCG to control $PGC-1{\alpha}$ expression, the promoter activity levels of $PGC-1{\alpha}$ were examined. The $PGC-1{\alpha}$ mRNA level was measured using quantitative real-time PCR. The -970/+412 bp of $PGC-1{\alpha}$ promoter was subcloned into the pGL3-Basic vector that includes luciferase as a reporter gene. EGCG was found to up-regulate the $PGC-1{\alpha}$ mRNA levels significantly with $10{\mu}mol/L$ of EGCG in HepG2 cells and differentiated 3T3-L1 adipocytes. $PGC-1{\alpha}$ promoter activity was also increased by treatment with $10{\mu}mol/L$ of EGCG in both cells. These results suggest that EGCG may induce $PGC-1{\alpha}$ gene expression, potentially through promoter activation.

Anti-inflammatory effect of (-)-epigallocatechin-3-gallate on Porphyromonas gingivalis lipopolysaccharide-stimulated fibroblasts and stem cells derived from human periodontal ligament

  • Jung, Im-Hee;Lee, Dong-Eun;Yun, Jeong-Ho;Cho, Ah-Ran;Kim, Chang-Sung;You, Yoon-Jeong;Kim, Sung-Jo;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.6
    • /
    • pp.185-195
    • /
    • 2012
  • Purpose: (-)-epigallocatechin-3-gallate (EGCG) has been reported to exert anti-inflammatory and antibacterial effects in periodontitis. However, its exact mechanism of action has yet to be determined. The present in vitro study evaluated the anti-in-flammatory effects of EGCG on human periodontal ligament fibroblasts (hPDLFs) and human periodontal ligament stem cells (hPDLSCs) affected by bacterial lipopolysaccharide (LPS) extracted from Porphyromonas gingivalis. Methods: hPDLFs and hPDLSCs were extracted from healthy young adults and were treated with EGCG and/or P. gingivalis LPS. After 1, 3, 5, and 7 days from treatment, cytotoxic and proliferative effects were evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and bromodeoxyuridine assay, respectively. And then, the gene expressions of hPDLFs and hPDLSCs were observed for interleukin (IL)-$1{\beta}$, IL-6, tumor necrosis factor (TNF)-${\alpha}$, osteoprotegerin (OPG), receptor activator of nuclear factor kappa-B ligand (RANKL), and RANKL/OPG using real-time polymerase chain reaction (PCR) at 0, 6, 24, and 48 hours after treatment. The experiments were performed with the following groups for hPDLFs and hPDLSCs; 1) No treat, 2) EGCG alone, 3) P. gingivalis LPS alone, 4) EGCG+P. gingivalis LPS. Results: The 20 ${\mu}M$ of EGCG and 20 ${\mu}g/mL$ of P. gingivalis LPS had the lowest cytotoxic effects, so those concentrations were used for further experiments. The proliferations of hPDLFs and hPDLSCs increased in all groups, though the 'EGCG alone' showed less increase. In real-time PCR, the hPDLFs and hPDLSCs of 'EGCG alone' showed similar gene expressions to those cells of 'no treat'. The gene expressions of 'P. gingivalis LPS alone' in both hPDLFs and hPDLSCs were highly increased at 6 hours for IL-$1{\beta}$, IL-6, TNF-${\alpha}$, RANKL, and RANKL/OPG, except the RANKL/OPG in hPDLSCs. However, those increased gene expressions were down-regulated in 'EGCG+P. gingivalis LPS' by the additional treatment of EGCG. Conclusions: Our results demonstrate that EGCG could exert an anti-inflammatory effect in hPDLFs and hPDLSCs against a major pathogen of periodontitis, P. gingivalis LPS.

Inhibitor Design for Human Heat Shock Protein 70 ATPase Domain by Pharmacophore-based in silico Screening

  • Lee, Jee-Young;Jung, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1717-1722
    • /
    • 2008
  • The 70 kDa heat-shock protein (Hsp70) involved in various cellular functions, such as protein folding, translocation and degradation, regulates apoptosis in cancer cells. Recently, it has been reported that the green tea flavonoid (−)-epigallocatechin 3-gallate (EGCG) induces apoptosis in numerous cancer cell lines and could inhibit the anti-apoptotic effect of human Hsp70 ATPase domain (hATPase). In the present study, docking model between EGCG and hATPase was determined using automated docking study. Epi-gallo moiety in EGCG participated in hydrogen bonds with side chain of K71 and T204, and has metal chelating interaction with hATPase. Hydroxyl group of catechin moiety also participated in metal chelating hydrogen bond. Gallate moiety had two hydrogen bondings with side chains of E268 and K271, and hydrophobic interaction with Y15. Based on this docking model, we determined two pharmacophore maps consisted of six or seven features, including three or four hydrogen bonding acceptors, two hydrogen bonding donors, and one lipophilic. We searched a flavonoid database including 23 naturally occurring flavonoids and 10 polyphenolic flavonoids with two maps, and myricetin and GC were hit by map I. Three hydroxyl groups of B-ring in myricetin and gallo moiety of GC formed important hydrogen bonds with hATPase. 7-OH of A-ring in myricetin and OH group of catechin moiety in GC are hydrogen bond donors similar to gallate moiety in EGCG. From these results, it can be proposed that myricetin and GC can be potent inhibitors of hATPase. This study will be helpful to understand the mechanism of inhibition of hATPase by EGCG and give insights to develop potent inhibitors of hATPase.