• Title/Summary/Keyword: epicotyl

Search Result 37, Processing Time 0.034 seconds

Effects of Inverted Incubation on Adventitious Root Formation in Epicotyl Cuttings of Vigna angularis Owhiet Ohashi (팥의 유경절편에서 부정근형성에대한 도립배양의 효과)

  • Kang, Byung-Sook;Cho, Duck-Yee;Kim, Young-Soon;Soh, Woong-Young
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.2
    • /
    • pp.75-80
    • /
    • 1998
  • Disbudded epicotyl cuttings from light-grown 6-day-old seedings of Vigna angularis Owhi et Ohashi were preincubated in $2\;\times\;10^{-4}M$ IAA solution for 48 hr to promote adventitious root formation in upright or inverted direction and then incubated in upright direction for 96 hr. Adventitious root formation occurred only at the morphological base of the cuttings which were preincubated in upright direction, while at the both ends in inverted direction. IAA treatment enhanced the adventitious root formation in all cuttings regardless of their orientation during preincubation. To elucidate localized root development, the activity of enzymes involved in root initiation and development was measured 24 hr, 48 hr, and 148 hr after epicotyl incubation. IAA oxidase, peroxidase and catalase were assayed in the apical, middle and basal segment of the epicotyls, and their fresh weight and length were measured. Elongation occurred the most in the upper segment of the epicotyl while fresh weight gain was the most in the basal segment. At root initiation phase, 24 hr after incubation IAA peroxidase and catalase activities appeared high at rooting zone while IAA oxidase activity was low at both ends, IAA oxidase and peroxidase activities declined at the rooting zone during the adventitious root formation at 48 ht. Inversion of cuttings during preincubation caused a chrange of enzyme activities along their epicotyl cuttings. Only peroxidase activity showed a high correlation with root initiation. Therefore, the biochemical change is highly correlated with change in IAA level in the rooting zone of the epicotyl, resulting in root formation in unusual rooting zone of epicotyl.

  • PDF

Vascular Differentiation in the Mature Embryo and the Seedling of Ginkgo biloba L. (은행나무의 성숙배 및 유식물에 있어서 유관속조직의 분화)

  • 홍성식
    • Journal of Plant Biology
    • /
    • v.26 no.4
    • /
    • pp.207-216
    • /
    • 1983
  • Mature embryo and developing seedlings of Ginkgo biloba L. were embedded in a paraplast and serially sectioned at 10${\mu}{\textrm}{m}$ to examine vascular differentiation and vascular transition. Procambium and protophloem formed a continuous system along the epicotylhypocotyl root axis and cotyledons in mature embryo, whereas protoxylem was differentiated discontinuously in the cotyledons and rarely in the upper hypocotyl. The traces of the first and second leaf primordia apeared almost at the same time oppositely to each otehr at the epicotyl and alternately with the cotyledon traces in the upper hypocotyl. The trace differentiated bidirectionally toward the epicotyl and root tips. the young root initially formed a diarch xylem. Then, as the traces of the first and second leaves were superimposed, the diarch xylem. Then, as the traces of the first and second leaves were superimposed, the diarch xylem of the root was changed totriarch and tetrarch xylem, respectively. On the formation of primary vascular system of Ginkgo biloba, it is suggested that the primary phloem forms a continuous system throughout the seedling, whereas the primary xylem of the epicotyl is formed independently from that of the root-hypocotyl cotyledon system.

  • PDF

Effect of Gibberellin and Chilling Treatments on Breaking Epicotyl Dormancy and Seedling Growth of Polygonatum odoratum Druce (둥굴레의 상배축(上胚軸) 휴면타파(休眠打破)와 유묘생장(幼苗生長)에 대한 지베렐린 및 저온 처리효과)

  • Kang, Jin-Ho;Kim, Dong-Il;Bae, Kee-Soo;Kim, Seok-Hyeon;Chung, Jong-Il
    • Korean Journal of Medicinal Crop Science
    • /
    • v.7 no.1
    • /
    • pp.16-21
    • /
    • 1999
  • Seed-propagation of Solomon's seal (Polygonatum odoratum) takes 2 years to shorten the period for becoming a practical method. The experiment was done to establish a proper method of breaking the epicotyl dormancy in bulk seed-propagation. Seedlings with a bulbil were treated with $GA_3$ every 2 days for 4 or 8 days and chilling treatments at $3^{\circ}C$ were enforced for 4, 6, 8 or 12 weeks. Emergence- and growth-related characteristics were examined immediately after the treatments, 3 and 6 weeks later. Rate of cotyledonary sheath rupture immediately after $GA_3$ treatment was greater in its 8-day treatment than in 4-day although its effect disappeared later. However, any epicotyl treated with $GA_3$ solution did not elongate so that new seedlings disemerged over the bed soil. That resulted from not breaking the epicotyl dormancy since $GA_3$ did not rupture all of the cotyledonary sheath formed with several sheets and consequently, the solution did not reach it. The $GA_3$ treatment for bulk seed-propagation, therefore, was impractical method. On the contrary, the chilling treatment was able to be applied to the seed-propagation because of getting the cotyledonary sheath rupture and the epicotyl elongation. Seedling emergence and its growth after chilling treatment were influenced by chilling period although required at least over 6-week treatment for satisfactory results.

  • PDF

Differentiation of the Vascular System in Mature Embryo and Seedling of Prunus davidiana FR. (산복사나무(Prunus davidiana FR.)의 성숙배와 유식물에 있어서 유관속계의 분화)

  • 홍성식
    • Journal of Plant Biology
    • /
    • v.28 no.4
    • /
    • pp.285-296
    • /
    • 1985
  • To examine the differentiation and transition of vascular system in Prunus davidiana FR., the mature embyro and developing seedlings were embedded in paraplast and treated by clearing method. In mature embryo, the procambium was connected with the epicotyl-hypocotyl-radicle axis and cotyledons, whereas protophloem and protoxylem were restricted primarily to the mid-vein and two lateral veins of the cotyledonary base. With the onset of germination, protophloem and protoxylem were differentiated both acropetally and basipetally from the cotyledonary base. The first and second leaf traces appeared in the cotyledonary node, and then differentiated bidirectionally toward the epicotyl and the root tip. The 3rd to 6th leaf traces were connected with the cotyledonary traces in hypocotyl. At the part of the root tip, the xylem was a diarch. As the first and second leaf traces were superimposed at the middle part of the root, the diarch xylem was changed to a tetrarch. As the cotyledonary traces were diverged below the root base, the tetrarch xylem was changed to an octarch. It was suggested that the vascular system of the epicotyl might be superimposed on that of the cotyledon-hypocotyl-root during the formation of the primary vascular system of Prunus davidiana.

  • PDF

Distribution of Fatty Acids in Newly Developed Tissues of Soybean Seedlings

  • Dhakal, Krishna Hari;Jeong, Yeon-Shin;Ha, Tae-Joung;Baek, In-Youl;Yeo, Young-Keun;Hwang, Young-Hyun
    • Korean Journal of Breeding Science
    • /
    • v.43 no.1
    • /
    • pp.32-41
    • /
    • 2011
  • The objective of this study was to determine the fatty acid composition of newly developed tissues of germinated soybean seeds. Five soybean accessions with varied fatty acid composition were allowed to germinate in sand under greenhouse conditions. Seedlings were picked up after 4, 6, 8, 10 and 12 days of germination and freeze dried. The fatty acid composition of the newly developed tissues was analyzed by gas chromatography. Significant variation in fatty acid composition was observed between accessions, days of germination, and variety ${\times}$ day of germination in whole and the cotyledons. In the case of newly developed five tissues, significant variation in fatty acid composition were observed between days of germination except oleic acid for root, hypocotyl and epicotyl stem and except stearic acid for hypocotyl and unifoliate leaves while all the parameters were significantly different for accession. Significant interactions of accession and days of germination were observed for palmitic, linoleic and linolenic acid in all tissues; only for oleic acid in hypocotyl, epicotyl and unifoliate leaves; and only for stearic acid in root, hypocotyl, epicotyl and unifoliate leaves. During germination, the fatty acid composition of newly developed tissues changed dramatically but whole seedlings and cotyledons changed slightly. These tissues contained five major fatty acids as found in original seeds, but compositions were totally different from that of the seed: higher in palmitic, stearic and linolenic acid and lower in oleic and linoleic acid. New tissues conserved their fatty acid compositions regardless of genotypic variation in the original seeds.

STUDIES ON THE TISSUE CULTURE OF PANAX GINSENG

  • Harn C
    • Proceedings of the Ginseng society Conference
    • /
    • 1974.09a
    • /
    • pp.9-22
    • /
    • 1974
  • Unlike the tissue culture in animals and human being, in higher plants various parts of the plant are cultured for varied purposes, and they are named variously depending on which parts are used as explants or what purposes they are cultured for. Followings are some of the names of culture used frequently: organ culture, tissue culture, callus culture, single cell culture, meristem culture, mericlone culture, ovary culture, ovule culture, embryo culture, endosperm culture, anther culture, pollen culture, protoplast culture, etc.. As the names of the culture indicate, in some kinds of culture the explants used for culture are actually not tissues, but organs, single cells, or protoplasts. It seems, however, convenient to call all of the above-mentioned cultures grossly as tissue culture. Several kinds of tissue culture were attempted using Panax ginseng as material and some of the results were summarized below. 1. Callus culture After dormancy of the sed was broken, whole embryo or parts (hypocotyl, cotyledon and epicotyl) of partly grown embryo were cultured in the media supplemented with growth regulators. Rapid swelling occurred in a few weeks, but most of the swelling was observed only in the basal part of epicotyl, changes in the other parts of embryo appearing in much later stages. The swelling or increase in size, however, was resulted not from the divisions of cells, but from the mere expansion of cell. Real calli were formed about two months after inoculation of explants. Callus tissues developed from cortex, pith, and vascular bundle in the cases of hypo- and epicotyl, from mesophyl tissue in the case of cotyledon. Shoots developed more easily from cotyledons regardless of whether they are detached from or attached to the embryo proper. 2. Culture in the Knudson C medium When cotyledons, detached from or attached to the embryo proper, were cultured in the growth regulator-free Knudson C medium comprision only several kinds of mineral compounds and sucrose, shoot primordium or callus developed profusely and finally plantlets were produced directly from shoot primordium or indirectly through callus. In this medium epidermal cells as well as mesophyl cells of the cotyledon became meristematic and divided, changing into multinucleate cells or multicellular bodies, developing eventually into either shoot primordia or calli. 3. Anther culture Anthers were cultured in the media supplemented with various growth regulators applied singly or in combinations. Callus was formed mostly in the connective tissue of anther. Cells of anther wall layers changed in appearance, but no division occurred. Microspores of all stages in development were not changed, ruling out the possibility that microspore-originated callus might be formed. 4. Isolation of protoplast Protoplasts were isolated from young root, leaf, and epicotyl, using 0.7M D-mannitols as osmoticum and using macerozyme and cellulase respectively for maceration and digestion of the cell wall. Production in large number of naked intact protoplast was rather difficult as compared with other plant species. Fusion of protoplasts occurred infrequently mainly due to the fewer number of naked protoplasts in the solution.

  • PDF

Organogenesis and Plant Regeneration in Tissue Cultures of Pelargonium aridum (Ligularia) and P. zonale(Ciconium) (Pelargonium aridum과 P. zonale의 기관발생에 의한 식물체 재분화)

  • 유순남
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.6
    • /
    • pp.307-310
    • /
    • 1995
  • Cotyledon and epicotyl explants of P. aridum and P. zonale formed calli when cultured on MS medium supplemented with 2 mg/L NAA and 0.2 mg/L BA. Calli were subcultured on the same medium Upon transfer to MS medium with 0.1 to 0.5mg/L NAA and 0.25 to 2mg/L BA for P. aridum 0.1 to 0.5mg/L NAA and 1 to 2mg/L BA for P. zonale subcultured calli gave rise to the greatest number of shoots (0.78 shoot for P. aridum and 0.65 shoot per explant for P. zonale, respectively).Most shoots produced roots when cultured on 1/2MS basal medium. The regenerates were transferred to potting soil and grown to materity in a greenhouse.

  • PDF

Plant Regeneration from in vitro Tissue Culture of Soybean Seedling (콩 유묘의 조직배양에 의한 식물체 분화)

  • Kim, Yong-Ho;Kim, Seok-Dong;Hong, Eun-Hi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.5
    • /
    • pp.419-424
    • /
    • 1992
  • To study the capacity of callus and shoot formation on seedling stage in soybean, excised hypocotyl, epicotyl, shoot tip, cotyledonary node and primary leaf were cultured on artificial media (MS and B$_{5}$ medium) supplemented with several hormones. Regeneration of shoots was fairly successful from shoot tip and cotyledonary node tissues in soybean. These shoots could be rooted in vitro through tissue culture technique and transplanted normally into soil. Hypocotyl and epicotyl tissues formed only callus, of which growth and appearance were different according to the kinds of media and additives. A small number of shoots were formed from primary leaf tissues, but they did not develop further.r.

  • PDF

Epicotyl Field Grafting in Walnut (Juglans sinensis Dode) (거접법을 이용한 호두나무 유경접목)

  • Park, Hyo-Won;Lee, Uk;Oh, Sung-Il;Jo, Yong-Sung;Kim, Chul-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.2
    • /
    • pp.243-247
    • /
    • 2020
  • This study investigates bench grafting (BG) and field grafting (FG) in walnut by comparing the graft take rate, grade ratio, and simple earning rate using a conventional method. The mean grafting-take rate of the BG was 30.3% while that of FG was 77.1%. The quality of grafted seedlings is classified as good, fair, and poor. The quality grade ratio of FG seedlings is 3:4:3 (good:fair:poor) while the grade ratio of BG seedlings is 2:3:5. Field grafting resulted in 20% more good and fair seedlings than the BG method. As a result of calculating the earning rate with the sales income versus the input cost, FG has 1.5 times higher earning rate than BG. In summary, FG could be an alternative to conventional epicotyl grafting because it produced high-quality seedlings and increased productivity due to its high graft-take rate and earning rate.