• Title/Summary/Keyword: epicenter distance

Search Result 37, Processing Time 0.022 seconds

Gyeongju Earthquakes Recorded in Daily Groundwater Data at National Groundwater Monitoring Stations in Gyeongju (경주 국가지하수관측소 일자료로 본 경주지진 영향)

  • Lee, Jin-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.80-86
    • /
    • 2016
  • Earthquakes of M5.1, M5.8 and M4.5 occurred in September 12 and 19 respectively in Gyeongju, Gyeongbuk Province. Theses earthquakes inflated fears of people and highlighted necessity of detailed countermeasures because we have considered our country is safe to earthquakes. In the meanwhile, earthquake also impacts groundwater and thus it was recently reported that the Gyeongju Earthquakes affected groundwater there. This study evaluates daily groundwater data collected from five national groundwater monitoring stations (Geoncheon, Sannae, Oedong, Yangbuksin, Cheonbuk) in Gyeongju. The analysis revealed that only groundwater level of bedrock monitoring well hosted in andesite exhibited earthquake impact while no wells in the other four stations hosted in sedimentary rocks showed substantial responses to the earthquakes. This may be derived from the difference of seismic velocity of hosting rocks as well as epicenter distance. Special interest on groundwater monitoring is required to predict earthquakes as precursory phenomena.

Effectiveness Criteria for Methods of Identifying Ionospheric Earthquake Precursors by Parameters of a Sporadic E Layer and Regular F2 Layer

  • Korsunova, Lidiya P.;Hegai, Valery V.
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.2
    • /
    • pp.137-140
    • /
    • 2015
  • The results of the study of ionospheric variations in the summer months of 1998-2002 at an ionospheric station of vertical sounding "Petropavlovsk-Kamchatsky" are presented. Anomalous variations of virtual sporadic-E height (h'Es), Es blanketing frequency (fbEs), and the critical frequency of the ionospheric F2 layer (foF2) (which can be attributed to the possible earthquake precursors) are selected. The high efficiency of the selection of ionospheric earthquake precursors based on the several parameters of Es and F2 layers is shown. The empirical dependence, which reflects the connection between the lead-time of the earthquake moment, the distance to the epicenter from the observation point, and the magnitude of the earthquake are obtained. This empirical dependence is consistent with the results of the detection of earthquake precursors by measuring the physical parameters of the Earth's crust in the same region.

Analysis of Seismic Response Characteristics for Wolsong Nuclear Power Plant Structures (월성원전 구조물의 지진응답 특성 분석)

  • 허택영
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.90-97
    • /
    • 1997
  • The purpose of this study is to evaluate the seismic response characteristics of Wolsong nuclear power plant (NPP) structures for the Kyeongju earthquake(ML=4.3) occurred on June 26, 1997. The seismograms are obtained from five accelerographs of nuclear power plant at Wolsong, Kyeongbuk. The distance from the epicenter is about 25km. The peak acceleration (PA) due to the earthquake is 0.0235g, which is far lower value than that of design basis earthquake(DBE). The PA at the containment wall is about twice as large as that at free field. Also, the higher the accelerograph is located in, the larger the PA is measured to be From the response spectrum analysis, the dominant frequency of the response is close to 4 Hz, which is similar to the free field is poor because of contamination by high frequency waves as a result of reflection and diffraction between ground and NPP structure. We are of opinion that the accelerograph at the free field should be moved approximately twice the building dimension away from the containment structure.

  • PDF

A Study on the Seismic Analysis of Continuous Preflex Composite Bridges (연속 프리플렉스 합성형교의 내진해석에 관한 연구)

  • 구민세;정재운;김훈희
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.241-248
    • /
    • 1999
  • Structural damage during an earthquake is caused by the response of the structure to the ground motion input at its base. The dynamic force produced in the structure are due to the inertia of its vibrating elements. The response of the structure exceeds the ground motion and this dynamic magnification depends on the duration and frequency content of the ground vibration, the soil properties at the site, distance from the epicenter and the dynamic characteristics of the structure. Earthquake load used in this study as a input data was artificially simulated with the design spectrum diagram in the Korean Earthquake Resistant Design Code. This paper presents the seismic analysis of the continuous preflex composite girder bridges according to variation of pier's height and span's length.

  • PDF

The Nature of Earthquake and Earthquake Resistant Building Design (지진의 성격과 건축물 내진설계에 대하여)

  • 양완수
    • Journal of the Korean Professional Engineers Association
    • /
    • v.28 no.2
    • /
    • pp.13-20
    • /
    • 1995
  • This paper Is to help the structural engineers for a better understanding of "Earthquake" with regard to the nature o( earthquake and the effect of earthquake on building structures. This reveals that the damage Inflicted upon by earthquake varies with many factors such as : magnitude of earthquake, distance from epicenter, site conditions, building structural characteristics and etc.. It is emphasized that in order to resist very strong earthquake, the ductility demand in the building structure Is important, and the proper duc-tility enables the structure to demonstrate inelastic rotation capacity of the joints and thus the structure may absorb and dissipate the seismic energy. This also presents a comparison between the current Americal UBC Code and the Korean Code, and the author expresses some points of concern on each code. Since earthquake almost invariably strikes at times and places, it is suggested that the current Korean Build-ing Code should be revised to enforce more stringent regulation against possible strong earthquake in the Korean peninsula.

  • PDF

A Study on the Presumption for Attenuation Relation by MT. O-dae earthquake data in Korea (오대산 지진자료에 의한 거리감쇠식 추정에 관한 연구)

  • Kwon, Ki-Hyuk;Hwang, Wan-Seon;Yu, Hye-Ran
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.33-36
    • /
    • 2008
  • In Korean Building Code 2005(KBC-2005), the Seismic Zone Factor is regulated by separating the seismic zone into two part. This seismic zone factor is not matched to regional seismic characteristics of our country because the factor is based on International Building Code 2000 (IBC-2000) of USA. This study inquiry for having a sufficient grasp of the seismic characteristics of south Korea region and appling for the seismic cope plan. We have collected and analyzed earthquake record happened in domestic region. There are two kinds of earthquake record. One is Historical earthquake data, another is Instrumental earthquake data. I used Instrumental earthquake record data which reliance is higher than historical earthquake data for proposing attenuation formulas by analyzing a correlation the epicenter and the distance.

  • PDF

Duration Magnitude and Local-Duration Magnitude Relations for Earth-quakes of 1979-1998 Recorded at KMA Network (한반도 지진의 지속규모식에 관한 연구)

  • 박삼근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.421-435
    • /
    • 1998
  • An empirical formula for estimating duration magnitude(MD)is determined by analyzing 619 epicentral distance-duration data set, obtained from earthquakes of 1989-1998 recorded at the KMA network. Based on two assumptions: 1) observed signal duration decreases with increasing epicentral distance, and 2) seismographs of KMA are set at low-gain and therefore inclusion of sensitivity correction term in the equation is not necessary, scaling predicted duration at epicenter to Tsuboi's local magnitude yielded the duration magnitude equation: MD =2.0292$\times$log$\tau$+0.00123Δ-1.4017 for 1/0$\leq$ML$\leq$5.0, where $\tau$is total signal duration(sec)and Δis epicentral distance(km). Event by event comparison of ML values against MD estimates for t152 events shows that for events having a same ML the difference in MD estimates reaches as high as 1.1 magnitude units. So, to test the usefulness of the duration magnitude equation, we have calculated ML-MD relations by which duration magnitude estimates are converted to local magnitudes ("predicted" ML, say) which are then compared with the directly determined local magnitude values. Except for events with stations where duration is anomalously reestimates(predicted ML) which are in an agreement within a 0.2 magnitude units with the corresponding ML values. Although this study could gain some insights into magnitudes of the past events, we still need to re-examine all the observables in order to obtain more reliable and precise information about magnitude and hypocenter location. So we will pursue a new local-magnitude scaling, as well as refinement of the duration magnitude equation, starting soon with re-reading the amplitudes-arrival time records of (and hence relocating) 250+earthquakes of 1979-present recorded at the KMA network. Thus, with more reliable and precise earthquake parameters determined we would better understand the recent seismicity and related tectonic process within and adjacent region to the Korean peninsula.peninsula.

  • PDF

Hypocentral Depth Determination of Gyeongju Earthquake Aftershock Sequence (경주 지진 여진의 진원 깊이 연구)

  • Chung, Tae Woong;Iqbal, Muhammad Zafar
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • Hypocentral depths of 103 aftershocks of the 12 September 2016 Gyeongju earthquake (ML 5.8) were inverted by epicentral relocation, using HYPO71 and HYPOINVERSE. From the comparison of seven models that reflect regional velocity structure in the southern Korean Peninsula, HYPO71 with linear weighting over the whole range showed less residuals than HYPOINVERSE for the model near the epicenter. Less uncertainties of focal depths were observed for the events with large magnitude and short range of the closest S-phase distance.

Earthquake Observation through Groundwater Monitoring: A case of M4.9 Odaesan Earthquake (지하수 모니터링을 통한 지진 감시 가능성: 중규모(M4.9) 오대산 지진의 관측)

  • Lee, Hyun-A;Kim, Min-Hyung;Hong, Tae-Kyung;Woo, Nam-C.
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.3
    • /
    • pp.38-47
    • /
    • 2011
  • Groundwater monitoring data from the National Groundwater Monitoring Stations, a total of 320 stations, were analyzed to identify the response of water level and quality to the Odaesan earthquake (M4.9) occurred in January 2007. Among the total of eight stations responded to the earthquake, five wells showed water-level decline, and in three wells, water level rose. In terms of recovery, water levels in four stations had recovered to the original level in five days, but not in the rest four wells. The magnitude of water-level change shows weak relations to the distance between the earthquake epicenter and the groundwater monitoring station. However, the relations to the transmissivities of monitored aquifer in the station with the groundwater change were not significant. To implement the earthquake monitoring system through the groundwater monitoring network, we still need to accumulate the long-term monitoring data and geostatistically analyze those with hydrogeological and tectonic factors.

Intesity and phase Indetificaion of the 13 June 1997 Kyeongju Earthquake (1997년 6월 26일 경주지진의 진도 및 파형분석)

  • 김우한
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.70-81
    • /
    • 1997
  • The intesity survery on the 26 June 1997 Kyeongju Earthquake whose magnitude is 4.3, has been made for 316 locations throughout southen park of Korean Peninsula, then we have investigated the intensities distribution of the earthquake. Because the earthquake was occurred during night time (03:50:23.19), the most people who live farather than about 200km from the epicenter did not feel the earthquake. Therefore, the intensities are estimated only from IV to V in this study. The iso-seismal intensity map shows that the shape of iso-seismal intensity is similar to the boundary of the Kyeongsang Basin. This phenomenon may indicates that the energy of the earthquake is trapped within the Kyeongsang Basin due to low velocity within the basin compared with the velocity outside of the basin. The travel time curves with 10 possible phases are used to identify the earquake records. The Pg and Sg phases are crearly shown in the records whose epicental distance is less than 60 km. The records of MUN and PCH stations located outside of the Kyiongsang Basin show different frequency compared with that of the other stations located within the Kyeongsang Basin.

  • PDF