• Title/Summary/Keyword: enzyme-curd

Search Result 25, Processing Time 0.019 seconds

Physicochemical and Rheological Evaluation of Rice-Whole Soybean Curds Prepared by Microbial Transglutaminase (미생물 Transglutaminase를 이용하여 제조된 쌀 혼합 전두부의 이화학적 및 물성 평가)

  • Jin, Ik-Hun;Lee, Sam-Pin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.738-746
    • /
    • 2011
  • We manufactured rice-whole soybean curd by a microbial transglutaminase (MTGase) with a mixture of hydrolyzed rice and micronized whole soybean powder (MWSP) and analyzed its rheological properties, including texture, viscoelasticity, protein cross-linking, and surface structure. A 40% rice suspension digested with a Termamyl enzyme at $85^{\circ}C$ for 20 min showed a 9.0% reducing sugar and a consistency of $1.27\;Pa{\cdot}s^n$, resulting in a great reduction in consistency. A MWSP suspension with 22% solid content was transformed into a typical tofu texture. MWSP curd fortified with 7.5% rice showed enhanced texture properties, with a hardness of 639.6 dyne/$cm^2$, and a springiness of 0.96. In a MWSP suspension (18~22% w/v) treated with 5% MTGase, viscoelasticity increased dependently with MWSP concentration, and a 22% MWSP indicated a G' value of 5.1 Pa and a G'' value of 9.0 Pa. Furthermore, soybean proteins present in the 22% MWSP curd largely disappeared or formed polymers with a high molecular weight by MTGase reaction within 30 min. MWSP (22%) fortified with 7.5% rice showed similar polymerization patterns on SDS-PAGE. The surface structure of the rice-MWSP curds was more dense and homogeneous network due to the addition of hydrolyzed rice. However, the surface structure of all rice-MWSP curds became rough and showed a non-homogeneous network after cold storage.

Effects of Rennin and/or Starter Addition on the Manufacture and Ripening of Soybean Cheeses (Rennin 및 Starter의 첨가(添加)가 대두(大豆)치즈의 제조(製造) 및 숙성(熟成)에 미치는 영향(影響))

  • Jeong, Jae Hong;Choi, Woo Young
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.2
    • /
    • pp.190-201
    • /
    • 1980
  • This experiment was designed to optimize the process of manufacturing the soybean cheeses and to elucidate the chemical changes during ripening when the chemical changes during ripening when the milk components and enzyme preparations were added to the raw materials. Conditions for extracting soybean protein such as temperature, duration and amount of water added were determined; various coagulaters were compared by checking the curd texture and yield; starters from S. thermophilus, S. lactis MLB and S. cremoris EB-9 were tested as single- or multi-stain combinations; and the effects of skim milk and/or rennins-both microbial and calf origin-addition upon the process of manufacturing and ripening were studied. The results obtained were as follows. 1. optimal conditions for soybean extraction were found to be: temperature $100^{\circ}C$, duration 10 minutes, and amount of water added 9-fold, as considered the extraction rate of solids and proteins, and curd yield. 2. Sodium gluconate was the most effective among the coagulators tested, and 5% of single-strain starter from S. thermophilus was appered to be adequate inoculum for curd formation. 3. The effects of skim milk and/or rennins addition on the process of manufacturing and ripening of soybean cheeses were: 1) The addition of rennins resulted in fast formation of curd, especially with skim milk it was so. And Hansen rennet extracts brought better results in curd formation than Meito rennet extracts did. 2) No significant effect was observed on the changes in moisture content during ripening, however the levels of moisture contents in the products were higher in case of using Meito rennet extracts. 3) Effect on pH changes during ripening was also not significant in general, while levels of pH were decrease markedly during manufacturing and the initial stage of ripening. 4) The levels of bacterial counts were much higher in case of skim milk addition throughtout the ripening period. In general the numbers were reached to approximately $10^8cells/g$ during manufacturing, then decreased gradually to below $10^2cells/g$ in 8 weeks of ripening. 5) The addition of skim milk and/or rennin resulted in higher ripening index, and skim milk plus Meito rennet extracts was appeared to be best combination for the ripening index.

  • PDF

Effects of microbial enzymes on starch and hemicellulose degradation in total mixed ration silages

  • Ning, Tingting;Wang, Huili;Zheng, Mingli;Niu, Dongze;Zuo, Sasa;Xu, Chuncheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.2
    • /
    • pp.171-180
    • /
    • 2017
  • Objective: This study investigated the association of enzyme-producing microbes and their enzymes with starch and hemicellulose degradation during fermentation of total mixed ration (TMR) silage. Methods: The TMRs were prepared with soybean curd residue, alfalfa hay (ATMR) or Leymus chinensis hay (LTMR), corn meal, soybean meal, vitamin-mineral supplements, and salt at a ratio of 25:40:30:4:0.5:0.5 on a dry matter basis. Laboratory-scale bag silos were randomly opened after 1, 3, 7, 14, 28, and 56 days of ensiling and subjected to analyses of fermentation quality, carbohydrates loss, microbial amylase and hemicellulase activities, succession of dominant amylolytic or hemicellulolytic microbes, and their microbial and enzymatic properties. Results: Both ATMR and LTMR silages were well preserved, with low pH and high lactic acid concentrations. In addition to the substantial loss of water soluble carbohydrates, loss of starch and hemicellulose was also observed in both TMR silages with prolonged ensiling. The microbial amylase activity remained detectable throughout the ensiling in both TMR silages, whereas the microbial hemicellulase activity progressively decreased until it was inactive at day 14 post-ensiling in both TMR silages. During the early stage of fermentation, the main amylase-producing microbes were Bacillus amyloliquefaciens (B. amyloliquefaciens), B. cereus, B. licheniformis, and B. subtilis in ATMR silage and B. flexus, B. licheniformis, and Paenibacillus xylanexedens (P. xylanexedens) in LTMR silage, whereas Enterococcus faecium was closely associated with starch hydrolysis at the later stage of fermentation in both TMR silages. B. amyloliquefaciens, B. licheniformis, and B. subtilis and B. licheniformis, B. pumilus, and P. xylanexedens were the main source of microbial hemicellulase during the early stage of fermentation in ATMR and LTMR silages, respectively. Conclusion: The microbial amylase contributes to starch hydrolysis during the ensiling process in both TMR silages, whereas the microbial hemicellulase participates in the hemicellulose degradation only at the early stage of ensiling.

Strategies to Reduce Phytate Content in the Korean Diet

  • Lee, Jee-Min;Li, Sun-Hee;Joung, Hyo-Jee;Paik, Hee-Young
    • International Journal of Human Ecology
    • /
    • v.4 no.1
    • /
    • pp.25-34
    • /
    • 2003
  • High dietary phytate is a known factor in reducing the bioavailability of minerals such as zinc and calcium which are already chronically low in the Korean diet. This study was conducted to develop methods for reducing dietary phytate through the addition of phytate and/or the substitution of high phytate foods with low phytate foods. Ten units of phytase per 100g of uncooked brown rice were added to brown rice gruel resulted in a 16.2% phytate reduction after a 3-hour incubation period; an 18.2% reduction was produced after a 6-hour incubation period. The addition of ten units of phytase per 100g of soybean curd residue at 45$^{\circ}C$, followed by refrigeration for 3 hours, resulted in a 19.1% phytate reduction. The addition of 20 units of phytase under the same conditions reduced phytate content by 24.6%. In this study, two typical Korean meals consisting of legumes and unrefined cereals were prepared as high phytate meals; these were then compared to low phytate meals that had been prepared by treating the foods with phytase and substituting unrefined with refined cereals (i.e., brown rice with white rice, whole wheat bread with white bread). The phytate content of the two high phytate meals was 1878.2mg and 1811.8mg. After the addition of phytase and the food substitution, the phytate content of the low phytate meals was reduced to 788.9mg and 606.0mg. The phytate to zinc molar ratio of high phytate diets was 22.4 and 21.3 and 9.4 and 7.9 for the low phytate meals. These results indicate that the nutritional status of Koreans in terms zinc and other minerals can be improved by phytate reduction. This can be accomplished through the change of milling process for some cereals and/or the enzyme treatment of some high phytate food items.

Effect of Soybean Curd Residue Fermented by Monascus pilosus on the High fat Diet-Induced Obese Mice (Monascus pilosus로 발효시킨 비지의 항비만 효과)

  • Lee, Sang-Il;Lee, Ye-Kyung;Kim, Soon-Dong;Lee, In-Ae;Choi, Jongkeun;Suh, Joo-Won
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.1
    • /
    • pp.7-15
    • /
    • 2014
  • This study investigated anti-obesity and antioxidant effects of dietary non-fermented soybean crud residue (SCR) and fermented SCR by Monascus pilosus (FSCR) in high-fat induced-obese mice. SCR and FSCR were supplemented with high-fat diet at 2% (wt/wt) dose for 8 weeks. Both SCR and FSCR significantly lowered body weight, epididymal fat weight and weight gain rate compared to high-fat diet control (HC) group and FSCR group showed lowest weight gain rate. In addition, it was observed that serum and hepatic lipid profiles including triglyceride, total cholesterol, LDL-cholesterol and HDL-cholesterol were significantly improved by supplementing SCR or FSCR. Furthermore, SCR and FSCR administration showed increase of glutathione content and decrease of hepatic lipid peroxide content, serum aminotransferase activity, and hepatic xanthine oxidase activity. On the other hand, activities of reactive oxygen species scavenging enzyme such as superoxide dismutase, glutathione S-transferase and glutathione peroxidase in two test groups were higher than those of HC. Lastly, in comparison with SCR, FSCR was more effective in restoring obesity-related biomarkers to normal level in high-diet induced obese mice. In conclusion, the present study indicates that FSCR could have not only anti-obese effects such as inhibition of abdominal fat accumulation, but also protective effects of cardiovascular disease such as atherosclerosis by decreasing serum and hepatic lipid contents. Furthermore, these results suggest that experimental diets in this study could alleviate hepatic damage caused by overproduction of reactive oxygen spices (ROS) due to obesity via inhibition of ROS generating activities and induction of ROS scavenging activities.