• Title/Summary/Keyword: enzyme hydrolysis

Search Result 969, Processing Time 0.028 seconds

Effects of Enzyme Treatments on Quality and Yields of Barley Tea (보리의 효소처리가 보리차의 품질 및 수율에 미치는 영향)

  • Kim, Woo-Jung;Ko, Hwan-Kyung;Yoon, Suk-Kwon
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.583-589
    • /
    • 1989
  • In order to improve the quality and yields of barley tea(water extracts), enzymatic hydrolysis was carried out with using three kinds of mired enzymes of ${\alpha}-amylase,\;{\beta}-amylase$ and protease. The barley treated with enzymes were the crushed , soaked and slightly roasted(light brown) Youngsanbori(hulless) and the physical, chemical and sensory characteristics were investigated. The results showed that enzymatic hydrolysis caused a signigicant increase in solid yields (80%) of barley tea, particularly with the mixed enzyme 5,000 which has higher activity of ${\alpha}-amylase$ than the other enzymes. The intrinsic viscosity of barley tea was reduced by enzymatic hydrolysis as the value of dextrose equivalent increased The Hunter L, a, b values was lower for the enzyme treated barley tea but showed not significant difference with reaction time. The organoleptic evaluation clearly showed that both intensity and acceptability of odor and taste was markedly Increased. The roasted nutty, and sweety odor and taste were particular in increase by mixed enzyme 5,000.

  • PDF

Synergism among Endo-xylanase, $\beta$-Xylosidase, and Acetyl Xylan Esterase from Bacillus stearothermophilus

  • Suh, Jung-Han;Choi, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.173-178
    • /
    • 1996
  • Synergic effects among endo-xylanase, $\beta$-xylosidase, and acetyl xylan esterase of Bacillus stearothermophilus in the hydrolysis of xylan were studied by using birchwood, oat spelt, and acetylated xylan as substrates. Synergism between endo-xylanase and $\beta$-xylosidase was observed on all three substrates tested, indicating that $\beta$-xylosidase enhanced the production of xylose by relieving the end-product inhibition upon endo-xylanase conferred by xylooligomers. Endo-xylanase and $\beta$-xylosidase also showed synergism with acetyl xylan esterase in the hydrolysis of birchwood and acetylated xylan, while no synergic effect was detected in oat spelt xylan hydrolysis. Thus, the hydrolysis of xylan containing acetic acid side chains required the action of acetyl xylan esterase, which eliminated the steric hindrance of the side chains, leading to the better hydrolysis by endo-xylanase and $\beta$-xylosidase , and the acetyl xylan esterase activity was also enhanced by endo-xylanase and $\beta$-xylosidase for the latter enzymes provided acetyl xylan esterase with shorter xylan oligomers, the better substrate for the enzyme.

  • PDF

Enzymatic Hydrolysis for Effective Extraction of Antioxidative Compounds from Hizikia fusiformis

  • Siriwardhana, Nalin;Jeon, You-Jin;Kim, Soo-Hyun;Ha, Jin-Hwan;Heo, Soo-Jin;Lee, Ki-Wan
    • ALGAE
    • /
    • v.19 no.1
    • /
    • pp.59-68
    • /
    • 2004
  • Hizikia fusiformis hydroysates by five carbohydrases (Viscozyme, Celluclast, Termamyl and Ultraflo) and five proteases (Protamex, Kojizyme, Neutrase, Flavourzyme and Alcalase) were investigated for their extraction efficacy (yield and total total polyphenolic content) and antioxidative activity (DPPH radical and hydrogen peroxide scavenging activity). Termamyl and Ultraflo of the carbohydrases and Flavourzyme and Alcalase of proteases were selected by their high eficacy of extraction and antioxidative activity. Selected enzymes were used to investigate the optimum enzymatic reaction time and dosage (enzyme/substrate ratio) suitable for hydorolysis. Optimum reaction time for the enzymatic hydrolysis was 3 days and optimum dosage of hydrolysis was observed as 5%. Simultaneously, Ultraflo of the two carbohydrases and Alcalse of the two proteases were selected as the most effective enzymes. Combination of Ultraflo and Alcalase under optimum hydrolysis conditions could intensify the extraction efficacy of antioxidative materials form H. fusiformis. The hydrolysate obtained by combining the enzymes was separated into four different molecular weight fractions (<1kD, 1-10 kD, 10-30 kD and >30 kD) and recorded the polyphenolic content distribution and respective antioxidative ability. The fraction <1kD was identified as less effective and those fractions > 1kD indicated comparatively higher antioxidative activities related to their polyphenolic content.

Enzymatical Hydrolysis of Low-Usefulness Marine Resources (이용도가 낮은 수산자원의 효소적 가수분해 조건)

  • 배태진
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.4
    • /
    • pp.394-401
    • /
    • 1998
  • In present work, the development of processing for various fermented sea foods using low-usefulness marine resources were investigated. The optimum temperatures of autolysis were 35$^{\circ}C$ for hair tail, 45$^{\circ}C$ for gizzard shad, 30$^{\circ}C$ for kangdale, 30$^{\circ}C$ for pen shell and 30$^{\circ}C$ for oyster and when alcalse(Novo Co.) were added, optimum temperatures were 60$^{\circ}C$, 50$^{\circ}C$, 50$^{\circ}C$, 50$^{\circ}C$ and 50$^{\circ}C$, respectively, and protease N, P. (Pacific chem. enzyme mixture 2,000) were 55$^{\circ}C$, 60$^{\circ}C$, 50$^{\circ}C$, 50$^{\circ}C$ and 50$^{\circ}C$, respectively. Especially although exozymes and endozymes reacted at same time, hydrolysis rate of raw materials got to maximum at optimum temperatures of exozymes. The facts showed that exozymes dominated the hydrolysis reached max8imum at pH 9.0, and optimum hydrolysis time of all raw materials were 6 hours. And the optimum concentrations of exozymes were about 3.0% for hair tail, 4.5% for gizzard shad, 3.5% for kangdale, 3.0% for pen shell and 3.0% for oyster, respectively.

  • PDF

Uniqueness of Microbial Cutinases in Hydrolysis of p-Nitrophenyl Esters

  • KIM, YANG-HOON;JEEWON LEE;SEUNG-HYEON MOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.57-63
    • /
    • 2003
  • Using fungal (Fusarium solani f. pisi) and bacterial (Pseudomonas mendocina) cutinases, the initial hydrolysis rate of p-nitrophenyl esters was systematically estimated for a wide range of enzyme and substrate concentrations using a 96-well microplate reader. Both cutinases exhibited a high substrate specificity; i.e. a high hydrolytic activity on p-nitrophenyl butyrate (PNB), yet extremely low activity on p-nitrophenyl palmitate (PNP). When compared to the hydrolysis of PNB and PNP by other hydrolases [lipases and esterases derived from different microbial sources, such as bacteria (Pseudomonas cepacia, Psedomonas furescens, Baciilus stearothermophilus), molds (Aspeillus niger, mucor miehei), and yeasts (Candida rugosa, Candida cylindracea)], the above substrate specificity would seem to be a unique characteristic of cutinases. Secondly, the hydrolytic activity of the cutinases on PNB appeared much faster than that of the other hydrolytic enzymes mentioned above. Furthermore, the current study proved that even when the cutinases were mixed with large amounts of other hydrolases (lipases or esterases), the Initial hydrolysis rate of PNB was determined only by the cutinase concentration for each PNB concentration. This property of cutinase activity would seem to result from a higher accessibility to the substrate PNB, compared with the other hydrolytic enzymes. Accordingly, these distinct properties of cutinases may be very useful in the rapid and easy isolation of various natural cutinases with different microbial sources, each of which may provide a novel industrial application with a specific enzymatic function.

Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry

  • Jeewanthi, Renda Kankanamge Chaturika;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.35 no.3
    • /
    • pp.350-359
    • /
    • 2015
  • This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application.

Process Development for the Enzymatic Hydrolysis of Food Protein: Effects of Pre-treatment and Post-treatments on Degree of Hydrolysis and Other Product Characteristics

  • Chae, Hee-Jeong;In, Man-Jin;Kim, Min-Hong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.1
    • /
    • pp.35-39
    • /
    • 1998
  • An enzymatic process was developed to produce protein hydrolysater form defatted soya protein. Various unit operations were tried, and the effects of pre- and post-treatments on the product characteristics such as degree of hydroylsis (DH), free amino acid content (%FAA) and average molecular weight (MW) were investigated. The use of acid washes showed no difference in %DH. Increasing pH during pre-cooking gave lower %DH. Alkaline cooking made too much insoluble protein, thus the protein yield was too small. A better hydrolysis with more acceptable taste was obtained when the combination of Neutrase/Alcalase/Flavourzyme was used in place of Alcalase/Flavourzyme combination; Untoasted defatted soya was more effective on the proteolysis than toasted one. The MW of the evaporated and spray dried product was higher than that of undried product, due to precipitation of low-solubility components. When ultrafiltration and the product concentration carried out the product separation by reverse osmosis, the solubility and the taste of the product were improved. The difference between enzyme hydrolysate and acid hydrolysate was significant in free amino acid composition, especially in tyrosine, phenylalanine, glutamine and asparagine.

  • PDF

Studies on Improved Amylases Developed by Protoplast Fusion of Aspergillus species

  • Adeleye, Tolulope Modupe;Kareem, Sharafadeen Olateju;Olufunmilayo, Bankole Mobolaji;Atanda, Olusegun;Osho, Michael Bamitale;Dairo, Olawale
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.45-56
    • /
    • 2021
  • Improved amylases were developed from protoplast fusants of two amylase-producing Aspergillus species. Twenty regenerated fusants were screened for amylase production using Remazol Brilliant Blue agar. Crude enzyme extracts produced by solid state fermentation of rice bran were assayed for activity. Three variable factors (temperature, pH and enzyme type) were optimized to increase the amylase activity of the parents and selected fusants using rice bran medium and solid state fermentation. Analysis of this optimization was completed using the Central Composite Design (CCD) of the Response Surface Methodology (RSM). Amylase activity assays conducted at room temperature and 80℃ demonstrated that Aspergillus designates, T5 (920.21 U/ml, 966.67 U/ml), T13 (430 U/ml, 1011.11 U/ml) and T14 (500.63 U/ml, 1012.00 U/ml) all exhibited improved function making them the preferred fusants. Amylases produced from these fusants were observed to be active over the entire pH range evaluated in this study. Fusants T5 and T14 demonstrated optimal activity under acidic and alkaline conditions, respectively. Fusants T13 and T14 produced the most amylase at 72 h while parents TA, TC and fusant T5 produced the most amylase after 96 h of incubation. Response surface methodology examinations revealed that the enzyme from fusant T5 was the optimal enzyme demonstrating the highest activity (1055.17 U/ml) at pH 4 and a temperature of 40℃. This enzyme lost activity with further increases in temperature. Starch hydrolysis using fusant T5 gave the highest yield of glucose (1.6158 g/100 ml). The significant activities of the selected fusants at 28 ± 2℃ and 80℃ and the higher sugar yields from cassava starch hydrolysis over their parental strains indicate that it is possible to improve amylase activity using the protoplast fusion technique.

Sugarcane Bagasse Hydrolysis Using Yeast Cellulolytic Enzymes

  • de Souza, Angelica Cristina;Carvalho, Fernanda Paula;Silva e Batista, Cristina Ferreira;Schwan, Rosane Freitas;Dias, Disney Ribeiro
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1403-1412
    • /
    • 2013
  • Ethanol fuel production from lignocellulosic biomass is emerging as one of the most important technologies for sustainable development. To use this biomass, it is necessary to circumvent the physical and chemical barriers presented by the cohesive combination of the main biomass components, which hinders the hydrolysis of cellulose and hemicellulose into fermentable sugars. This study evaluated the hydrolytic capacity of enzymes produced by yeasts, isolated from the soils of the Brazilian Cerrado biome (savannah) and the Amazon region, on sugarcane bagasse pre-treated with $H_2SO_4$. Among the 103 and 214 yeast isolates from the Minas Gerais Cerrado and the Amazon regions, 18 (17.47%) and 11 (5.14%) isolates, respectively, were cellulase-producing. Cryptococcus laurentii was prevalent and produced significant ${\beta}$-glucosidase levels, which were higher than the endo- and exoglucanase activities. In natura sugarcane bagasse was pre-treated with 2% $H_2SO_4$ for 30 min at $150^{\circ}C$. Subsequently, the obtained fibrous residue was subjected to hydrolysis using the Cryptococcus laurentii yeast enzyme extract for 72 h. This enzyme extract promoted the conversion of approximately 32% of the cellulose, of which 2.4% was glucose, after the enzymatic hydrolysis reaction, suggesting that C. laurentii is a good ${\beta}$-glucosidase producer. The results presented in this study highlight the importance of isolating microbial strains that produce enzymes of biotechnological interest, given their extensive application in biofuel production.

The Enzymatic Hydrolysis of Cellulose in Supercritical Carbon Dioxide Fluid (초임계 이산화탄소 유체에서 섬유소의 효소 가수분해)

  • Park, Chang-Yeol;Kim, Chul;Ryu, Yeon-Woo
    • KSBB Journal
    • /
    • v.13 no.6
    • /
    • pp.687-692
    • /
    • 1998
  • Experimental studies were carried out on the use of supercritical fluid in enzymatic hydrolysis of cellulose. In order to effectively perform the hydrolysis the enzyme has to maintain stability and activity in the supercritical carbon dioxide solvent. In the experiment it was found that the stability of cellulase was maintained up to 160 atm for 90 min at $50^{\circ}C$. In the enzymatic hydrolysis of cellulose at supercritical conditions using carbon dioxide at 80 atm and $50^{\circ}C$ for 90 min, the results showed that glucose yield was 100%, which was 1.5 times as compared to that in atmospheric condition when the substrate (Avicel) concentration was 20 g/L. For the substrate concentration of 60 g/L, the glucose yield was increased by 1.2 times as compared to that in atmospheric condition.

  • PDF