• Title/Summary/Keyword: enzyme hydrolysis

Search Result 969, Processing Time 0.021 seconds

Scale- Up of Water-Oil Hydrolysis System

  • Hur, Byung-Ki;Kim, Eun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.773-777
    • /
    • 1999
  • Scale-up experiments for hydrolysis of beef tallow, fat, and palm kernel with lipase derived from Candida cylindracea were carried out in 1-1, 100-1, and 10,000-1 reactors. The optimum agitation speed for the hydrolysis of the 1-1 reactor was investigated and found to be 350rpm, and this was a basis for the scale-up of agitation speed. The hydrolysis system in this work was the oil-water system in which the hydrolysis seems to process a heterogeneous reaction. An emulsion condition was the most important factor for determining the reaction rate of hydrolysis. Therefore, the scale-up of agitation speed was performed by using the power n = 1/3 in an equation of the rules of thumb method. The geometrical similarity for scaling-up turned out to be unsatisfactory in this study. Thus, the working volume per one agitator was used for the scale-up. In the case of scale-up from a 1-1 reactor to a 100-1 reactor, the hydrolysis of palm kernel was very much scaled-up by initiating the rules of thumb method. However, the hydrolysis of fat and beef tallow in a 100-1 reactor was a little higher than that of the 1-1 reactor because of the difference of geometrical similarity. The scale-up of hydrolysis from the 100-1 reactor to the 10,000-1 reactor was improved compared to that of the 1-1 to 100-1 reactor. The present results indicated that the scale-up of hydrolysis in the oil-water system by the rules of thumb method was more satisfactory under the condition of geometrical similarity. Even in the case where geometrical similarity was not satisfactory, the working volume per one agitator could be used for the scale-up of a heterogeneous enzyme reaction.

  • PDF

Purification and Characterization of $Ginsenoside-{\beta}-Glucosidase$

  • Yu Hongshan;Ma Xiaoqun;Guo Yong;Jin Fengxie
    • Journal of Ginseng Research
    • /
    • v.23 no.1 s.53
    • /
    • pp.50-54
    • /
    • 1999
  • In this paper, the saponin enzymatic hydrolysis of ginsenoside Rg3 was studied. The $ginsenoside-{\beta}-glucosidase$ from FFCDL-48 strain mainly hydrolyzed the ginsenoside Rg3 to Rh2, the enzyme from FFCDL-00 strain hydrolyzed Rg3 to the mixture of Rh2 and protopanaxadiol (aglycon). The $ginsenoside-{\beta}-glucosidase$ from FFCDL-48 strain was purified with a column of DEAE-Cellulose to one spot in the SDS polyacrylamide gel electrophoresis. During the purification, the enzyme specific acitvity was increased about 10 times. The purified $ginsenoside-{\beta}-glucosidase$ can hydrolyze the Rg3 to Rh2, but do not hydrolyze the $p-nitrophenyl-{\beta}-glucoside$ which is a substrate of original exocellulase such as ${\beta}-glucosidase$ of cellulose. The molecular weight of $ginsenoside-{\beta}-glucosidase$ was 34,000, the optimal temperature of enzyme reaction was $50^{\circ}C,$ and the optimal pH was 5.0.

  • PDF

Characterization of $\beta$-1,4-D-arabinogalactanase from Alkalophilic Bacillus sp. HJ-12 (호알칼리성 Bacillus sp. HJ-12 유래 $\beta$-1,4-D-arabinogalactanase의 특성)

  • 신해헌;변유량
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.710-716
    • /
    • 1995
  • $\beta $-1, 4-D-arabinogalactanase isolated from alkalophilic Bacillus sp. HJ-12, approximate Mw 42 kDa, was generally stable in the range of pH 6-10 and below 50$\circ$C and its highest activity was observed at 60$\circ$C with pH 7-9. The isolated $\beta $-1, 4-D-arabinogalactanase specifically hydrolyzed $\beta $-1, 4-galactosyl linkage that is the major structure of soybean arabinogalactan (SAG) but not $\beta $-1, 3-galactosyl linkage of the other polysaccharides. K. was estimated as 0.67 mg/ml by the method of Hanes-Woolf plot. No metals and chemical reagents inhibited the enzyme activity but urea did. The active site of this enzyme assumed to be tryptophan residue. The hydrolysis products from SAG, assayed by gel chromatography, TLC and HPLC, were predominantly galactotetraose (Gal$_{4}$) and triose (Gal$_{3}$) with a small portion. $\beta $-1, 4-D-arabinogalactanase hydrolyzed ONPG as well as SAG, and the degree of hydrolysis of SAG was 15% which is lower than that by the other $\beta $-1, 4-galactanases from different sources. SAG treated with this enzyme resulted in the reduction of specific viscosity up to 70%.

  • PDF

Helicobacter pylori Urease May Exist in Two Forms: Evidence from the Kinetic Studies

  • Gang, Jin-Gu;Yun, Soon-Kyu;Hwang, Se-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1565-1568
    • /
    • 2009
  • Purified Helicobacter pylori urease displayed a sigmoid curve in the plot of velocity versus [S] at urea concentrations less than 0.1mM. Under conditions where preservatives, glycerol, or polyethylene glycol (PEG) were added to the enzyme reaction, the substrate hydrolysis was consistent with Michaelis-Menten kinetics, with a $K_m$ of $0.21\;{\pm}\;0.06\;mM$ and a $V_{max}$ of $1,200\;{\pm}\;300\;{\mu}mol\;min^{-1}\;mg^{-1}$. However, at saturating substrate concentrations, the kinetic parameters of H. pylori urease were unaffected by the presence of the preservatives, and enzyme catalysis conformed to Michaelis-Menten kinetics. The Hill coefficients of the enzyme-catalyzed urea hydrolysis in the presence and absence of PEG were 1 and 2, respectively. Based on these findings, we suggest that H. pylori urease may exist in aggregated and dissociated forms, each with intact function but differing kinetics that may be of importance in maximizing urea breakdown at varying urea concentrations in vivo.

Antioxidant and Angiotensin I Converting Enzyme Inhibitory Activities of Red Snow Crab Chionoecetes japonicas Shell Hydrolysate by Enzymatic Hydrolysis

  • Yoon, Na Young;Shim, Kil-Bo;Lim, Chi-Won;Kim, Sang-Bo
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.4
    • /
    • pp.237-242
    • /
    • 2013
  • We investigated the antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of red snow crab Chionoecetes japonicas shell (RSCS) hydrolysate by enzymatic hydrolysis and its molecular weight cut-off fractions. The RSCS hydrolysate was fractionated through two ultrafiltration membranes of 3 and 10 kDa cut-offs. Three fractions (<3 kDa, 3-10 kDa, and >10 kDa) were evaluated for total amino acid composition, antioxidant activities using 2'-azino-bis[3-ethylbenzthiazoline-6-sulfonic acid] ($ABTS^+$) radical scavenging and superoxide dismutase (SOD)-like activities and reducing power assays, and ACE inhibitory activity using Hou's method. Although all fractions showed activity, the <3 kDa fraction of RSCS hydrolysate exhibited the greatest $ABTS^+$ radical scavenging, SOD-like and ACE inhibitory activities. However, these fractions exhibited low reducing power. These results suggest that the low-molecular-weight enzymatic hydrolysate of RSCS could be used as a functional ingredient to control oxidative stress and ACE activity.

Characterization of Glutaryl 7-ACA Acylase from Pseudomonas diminuta KAC-1

  • Kim, Dae-Weon;Kang, Sang-Mo;Yoon, Ki-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.452-457
    • /
    • 2001
  • The glutaryl 7-aminocephalosporanic acid (glutaryl 7-ACA) acylase was purified from Pseudomonas diminuta KAC-1 cells isolated from soil, and characterized. The acylase was purified by procedures including ammonium sulfate fractionation and column chromatographies on DEAE-Sepharose, Phenyl-Sepharose, Q-Sepharose, and Superose 12H/R. The negative acylase was found to be composed of two subunits with molecular masses of approximately 55 kDa and 17 kDa, respectively. The isoelectric point of the enzyme was 4.0. The specific activities of the purified acylase were 8.0 and 7.0 U/mg on glutaryl 7-ACA and glutaryl 7-aminodesacetoxy cephalosporanic acid (glutaryl 7-ADCA), respectively, and $K_m$ values were 0.45 mM for glutaryl 7-ADCA and 0.67 mM for glutaryl 7-ADCA. The enzyme had a pH optimum at 8.0 and a tmperature optimum at $40^{\circ}C$. The acylase catalyzed the synthesis of glutaryl 7-ACA from glutaric acid and 7-ACA as well as the hydrolysis of glutaryl 7-ADCA, although the reaction rate of the synthesis was slower than that of the hydrolysis. In addition, it was found that the enzyme had a glutaryl transferase activity, thereby transferring the glutaryl group from one cephalosporin nucleus to another.

  • PDF

Efficient Constitutive Expression of Cellulolytic Enzymes in Penicillium oxalicum for Improved Efficiency of Lignocellulose Degradation

  • Waghmare, Pankajkumar Ramdas;Waghmare, Pratima Pankajkumar;Gao, Liwei;Sun, Wan;Qin, Yuqi;Liu, Guodong;Qu, Yinbo
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.740-746
    • /
    • 2021
  • Efficient cellulolytic enzyme production is important for the development of lignocellulose-degrading enzyme mixtures. However, purification of cellulases from their native hosts is time- and labor-consuming. In this study, a constitutive expression system was developed in Penicillium oxalicum for the secreted production of proteins. Using a constitutive polyubiquitin gene promoter and cultivating with glucose as the sole carbon source, nine cellulolytic enzymes of different origins with relatively high purity were produced within 48 h. When supplemented to a commercial cellulase preparation, cellobiohydrolase I from P. funiculosum and cellobiohydrolase II from Talaromyces verruculosus showed remarkable enhancing effects on the hydrolysis of steam-exploded corn stover. Additionally, a synergistic effect was observed for these two cellobiohydrolases during the hydrolysis. Taken together, the constitutive expression system provides a convenient tool for the production of cellulolytic enzymes, which is expected to be useful in the development of highly efficient lignocellulose-degrading enzyme mixtures.

Characterization of Low-Molecular-Weight Collagen from Korean Native Chicken Feet Hydrolyzed Using Alcalase

  • Heedong Woo;Gyeong A Jeong;Hyunwook Choi;Chang Joo Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.5
    • /
    • pp.656-661
    • /
    • 2023
  • The aims of this study were to optimize the preparation of low-molecular-weight collagen using a proteolytic enzyme (alcalase) derived from the feet of Korean native chickens, and to characterize the process of collagen hydrolysis. Foreign bodies from chicken feet were removed using ultrasonication at 28 kHz with 1.36 kW for more than 25 min. The hydrolytic pattern and molecular weight distribution of enzyme-treated collagen from chicken feet were analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high-performance liquid chromatography, respectively. Ideally, chicken feet should be treated at 100℃ for 8 h to obtain a high collagen content using hot water extraction. The collagen content of the chicken foot extract was 13.9 g/100 g, and the proportion of low-molecular-weight collagen increased with increasing proteolytic enzyme concentration and reaction time. When treated with 1% alcalase, the average molecular weight of collagen decreased rapidly to 4,929 Da within 5 h and thereafter decreased at a slower rate, reaching 4,916 Da after 7 h. Size exclusion chromatography revealed that low-molecular-weight collagen peptides of approximately 1,000-5,000 Da were obtained after hydrolysis with 1% alcalase for 1 h.

Enantioselective N-Acetylation of 3-Amino-3-phenylpropionic Acid by Cell-free Extracts of Streptomyces neyagawaensis

  • Chung, Myung-Chul;Lee, Ho-Jae;Lee, Choong-Hwan;Chun, Hyo-Kon;Kho, Yung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.329-332
    • /
    • 1997
  • Cell-free extracts of Streptomyces neyagawaensis SL-387 grown on a chemically defined medium supplemented with DL-3-amino-3-phenylpropionic acid (APP) produced N-acetyl-APP (Ac-APP) in the presence of APP and acetyl coenzyme A. The APP obtained by acid hydrolysis of the Ac-APP was D-configuration: $[\alpha]_D+6.5^{\circ}(H_2O)\;at\;20^{\circ}C$, optical purity 92% enantiomeric excesses (ee). These results suggest that an N-acetyltransferase exists in the cell-free extract as a novel enzyme with specificity for D-APP.

  • PDF

Characteristics of Commercial Celluloytic Enzymes (상업용 목질섬유소 분해 효소의 특성)

  • Kim, Young-Yuk;Kim, Chul-Hyun;Park, Soung-Bae;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.3
    • /
    • pp.1-8
    • /
    • 2004
  • It is very difficult to compare directly the research results of enzymatic process in pulp and paper industry because commercial enzymes have diversity in its property. The chemical and biological properties of commercial enzymes were Investigated to help comparison of various commercial enzymes each other. In most case, the solid content of liquid enzymes was about 20%. The higher protein content in enzyme product does not mean the higher enzyme activity. Enzymes for paper process should selected by basis of enzyme activity, not by price of enzyme products. The chemical composition of fiber was not so much change with enzyme treatment. The enzymatic hydrolysis of fiber might negligible in paper process.