• Title/Summary/Keyword: enzyme hydrolysates

Search Result 197, Processing Time 0.025 seconds

Antioxidant and ACE Inhibitory Activities of Soybean Hydrolysates: Effect of Enzyme and Degree of Hydrolysis

  • Lee, Ji-Soo;Yoo, Mi-Ae;Koo, Seung-Hyun;Baek, Hyung-Hee;Lee, Hyeon-Gyu
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.873-877
    • /
    • 2008
  • Native soy protein isolate (SPI) was hydrolyzed with 4 different proteolytic enzymes, including bromelain, papain, Neutrase, and Flavourzyme. SPI hydrolysates with the degree of hydrolysis (DH) in range of 6 to 15% were prepared by each enzyme. The angiotensin 1 converting enzyme (ACE) inhibitory and the antioxidant activities of the SPI hydrolysates, such as superoxide dismutase-like activity and inhibition of the linoleic acid autoxidation, were evaluated. Overall, as the DH increased, all evaluated bioactivities of the SPI hydrolysates significantly increased. The significantly highest ACE inhibitory and antioxidant activities were found in hydrolysates made with papain and bromelain, respectively. SPI hydrolysates by Flavourzyme showed the significantly lowest activity in all tested bioactivities. The results suggested that ACE inhibitory and antioxidant activities of SPI hydrolysates were determined by the DH and by the enzyme used.

Cryoprotective Effect and Mechanism of Corn Starch Enzyme Hydrolysates on Fish Protein 2. Cryoprotective Mechanism of Corn Starch Enzyme Hydrolysates on Fish Protein (전분가수분해물의 어육단백질 동결변성 방지효과 및 작용기구 2. 옥수수전분가수분해물의 어육단백질에 대한 동결변성 방지 기구)

  • LEE Kang-HO;JUNG Byung-Chun;HONG Byung-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.6
    • /
    • pp.829-834
    • /
    • 1998
  • It is well known that the native conformation of many proteins can be stabilized by carbohydrates or polyalcohols. However, the mechanism of the stabilization still remains unclear. In the present studies, to characterize the cryoprotective mechanism of corn starch enzyme hydrolysates on fish protin, solubility of hydrolysates, thermal behavior of hydrolysates and actomyosin solution, and enzyme kinetics in frozen system were investigated. The solubility of the hydrolysates increased with the increase in D.E. value. The $T_g^{'}$ of the hydrolysates were linearly correlated with D.E. value and the T-g value of the hydrolysates (D.E. 5,10,15,20) were reported to be $-7.2^{\circ}C\;-8.8^{\circ}C\;-11.9^{\circ}C$, and $-14.3^{\circ}C$, respectively. The results of enzyme experiments showed that the higher the D.E. value, the higher was the rate of reaction in frozen storage ($-12^{\circ}C$). It is found to support the cryostabilization mechanism that the hydrolysats act to enmesh the protein in a glass state where all deteriorative processes are greatly slowed down.

  • PDF

Antioxidative Action of Enzymatic Hydrolysates of Mackerel Muscle Protein (고등어 근육단백질 효소 가수분해물의 항산화 작용)

  • 염동민;김영숙
    • The Korean Journal of Food And Nutrition
    • /
    • v.7 no.2
    • /
    • pp.128-136
    • /
    • 1994
  • Mackerel muscle protein hydrolysates, which were prepared from defatted mackerel meal by proteases such as complex enzyme, alcalase, bromelain, pancrease, pepsin, w-chymotrypsin, trypsin and papain, were tested for the antioxidative action against linoleic acid. Among proteases tested, the hydrolysates obtained from the treatment of complex enzyme, bromelain and alcalase showed higher antioxidative effects. Also, the hydrolysates showed the synergistic effects with o-tocopherol and the inhibitory effects for peroxidation of metal ions(Fe3+, Cua+) From the profiles of fractionation of the hydrolysates with Bio-gel P-2 column, the most active fractions, part I(complex enzyme-derived) and part e(bromelain-derived), had below MW 1,400 and the antioxidative effects were closely related to the binding capacity with metal ion(Cua+). Amno acid composition of the part I was abundant in histidine, arginine, phenylalanine and lysine, and the part e was abundant in lysine, glutamic acid and leucine.

  • PDF

Enzymatic hydrolysis of insoluble silk sericin by Alcalase

  • Jung, Hye-Young;Bae, Do-Gyu
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.1
    • /
    • pp.48-57
    • /
    • 2000
  • This study was undertaken to figure out the effects of hydrolysis conditions on the solubility of insoluble sericin, molecular weight distribution and thermal characteristics of hydrolysates in enzymatic hydrolysis by Alcalase 2.5L. It was indicated that the optimum treatment temperature and pH for the insoluble sericin were 50$\^{C}$ and 11, respectively. When the insoluble sericin was hydrolyzed with a various treatment conditions, the solubility of all hydrolysates were represented above 85% at given conditions. As the enzyme concentration increased, the solubility increased roughly, but the solubility increasement ratio was less above 2% enzyme concentration. As the treatment time increased, the solubility was also increased. It was showed in the molecular weight distribution of hydrolysates treated various enzyme concentrations and treatment times that when enzyme concentrations were 0.5, 2, 3%, the peaks of the distribution curve were shifted to left side which meant low molecular weight and was distributed much quantity with shifted to be left side, but treatment time was 6 hr. the peak was shifted to right side. When enzyme concentration was 5% and treatment time was below 2 hr., the peaks were shifted to right side, but treatment time was above 4hr. the peak was shifted to left side. The number-average molecular weights were distributed from 300 to 800 and those were decreased when treatment time was up to 4 hr., but increased a little when treatment time was 6hr. It was showed in the DSC curves of hydrolysates treated with treatment time of 0.5, 1, 2, 4, 6 hr. fixed 1% o.w.s enzyme concentration and control that the endothermic peak was observed near at 200$\^{C}$. The denaturation peak of the hydrolysates depending on treatment times had a tendency to shift to higher temperature. But, when the treatment time was 6 hr., the peak was shifted to lower temperature comparing another hydrolysates.

  • PDF

Hepatoprotective Effects of Various Enzyme Hydrolysates from Oysters on Tacrine-Induced Toxicity in Human Hepatoma Cells (타크린으로 유발한 간세포 독성에 대한 효소별 굴 가수분해물의 보호 효과)

  • Park, Hye-Jin;Do, Hyung-Joo;Kim, Ok-Ju;Kim, Andre;Ha, Jong-Myung
    • Journal of Life Science
    • /
    • v.22 no.1
    • /
    • pp.117-125
    • /
    • 2012
  • This study investigated the potential hepatoprotective benefits of Crassostrea gigas oyster hydrolysates. Oysters are known to have many biofunctional properties. In particular, oyster enzymatic hydrolysates produce substances with beneficial functions. The potential hepatoprotective effects of C. gigas hydrolysates against damage induced by tacrine were evaluated in vitro in HepG2 cells. Peptides were generated from C. gigas by enzymatic hydrolysis with Neutrase, Flavourzyme, or Protamex enzyme preparations. Tacrine treatment induced considerable cell damage in HepG2 cells, as shown by significant leakage of glutamic oxaloacetic transaminase (GOT) and lactate dehydrogenase (LDH). Cells treated with C. gigas hydrolysates showed an increased resistance to oxidative challenge compared to control cells, as revealed by higher cell survival against tacrine-induced hepatotoxicity. In addition, treatment with C. gigas hydrolysates reduced the leakage of GOT and LDH. These findings indicate that enzyme hydrolysates derived from C. gigas may be of benefit for developing hepatoprotective foods and drugs.

Analysis of Angiotensin I Converting Enzyme Inhibitory Activity of Oligosacchride Extracted from Capsosiphon fulvescens (매생이 유래 올리고당의 추출 분리 및 Angiotensin I Converting Enzyme 저해능 분석)

  • Kim, Hyun-Woo;Lee, Jung-Heon
    • KSBB Journal
    • /
    • v.28 no.2
    • /
    • pp.131-136
    • /
    • 2013
  • The hydrolysates prepared with various enzyme digestion of Capsosiphon fulvescens were used to measure the inhibitory effects against angiotensin I converting enzyme (ACE). The commercially available enzymes such as Celluclast, Viscozyme, Lysing enzyme, Flavourzyme, Alcalase and Pectinex were used to digest C. fulvescens and produce hydrolysates. The maximum ACE inhibitory activity was observed using Alcalase hydrolysis (72.9%). The optimal conditions of Alcalase extraction were pH 8.0 and extraction time for 12 hr. The hydrolysates were fractionated using preparative-LC and anion-exchange chromatography on DEAE-cellulose and the fraction B and B-2 were isolated. The ACE inhibitory activity of fraction B-2 by anion-exchange chromatography was 82.6%. The molecular weight of fraction B-2 estimated using size exclusion chromatography was about 1 kDa. The monosaccharide composition of the fraction B-2 was determined to be mannose (1.1%), glucuronic acid (1.3%), galactose (1.3%) and glucose (96.3%).

Angiotensin I-converting Enzyme Inhibitory Activities of Porcine Skeletal Muscle Proteins Following Enzyme Digestion

  • Katayama, K.;Fuchu, H.;Sakata, A.;Kawahara, S.;Yamauchi, K.;Kawamura, Y.;Muguruma, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.417-424
    • /
    • 2003
  • Inhibitory activities against angiotensin I-converting enzyme (ACE) of enzymatic hydrolysates of porcine skeletal muscle proteins were investigated. Myosin B, myosin, actin, tropomyosin, troponin and water-soluble proteins extracted from pork loin were digested by eight kinds of proteases, including pepsin, $\alpha$-chymotrypsin, and trypsin. After digestion, hydrolysates produced from all proteins showed ACE inhibitory activities, and the peptic hydrolysate showed the strongest activity. In the case of myosin B, the molar concentration of peptic hydrolysate required to inhibit 50% of the activity increased gradually as digestion proceeded. The hydrolysates produced by sequential digestion with pepsin and $\alpha$-chymotrypsin, pepsin and trypsin or pepsin and pancreatin showed weaker activities than those by pepsin alone, suggesting that ACE inhibitory peptides from peptic digestion might lose their active sequences after digestion by the second protease. However, the hydrolysates produced by sequential digestion showed stronger activities than those by $\alpha$-chymotrypsin, trypsin or pancreatin alone. These results suggested that the hydrolysates of porcine meat were able to show ACE inhibitory activity, even if they were digested in vivo, and that pork might be a useful source of physiologically functional factors.

Enzymatic Hydrolysis of Ovotransferrin and the Functional Properties of Its Hydrolysates

  • Rathnapala, Ethige Chathura Nishshanka;Ahn, Dong Uk;Abeyrathne, Edirisingha Dewage Nalaka Sandun
    • Food Science of Animal Resources
    • /
    • v.41 no.4
    • /
    • pp.608-622
    • /
    • 2021
  • Bioactive peptides have great potentials as nutraceutical and pharmaceutical agents that can improve human health. The objectives of this research were to produce functional peptides from ovotransferrin, a major egg white protein, using single enzyme treatments, and to analyze the properties of the hydrolysates produced. Lyophilized ovotransferrin was dissolved in distilled water at 20 mg/mL, treated with protease, elastase, papain, trypsin, or α-chymotrypsin at 1% (w/v) level of substrate, and incubated for 0-24 h at the optimal temperature of each enzyme (protease 55℃, papain 37℃, elastase 25℃, trypsin 37℃, α-chymotrypsin 37℃). The hydrolysates were tested for antioxidant, metal-chelating, and antimicrobial activities. Protease, papain, trypsin, and α-chymotrypsin hydrolyzed ovotransferrin relatively well after 3 h of incubation, but it took 24 h with elastase to reach a similar degree of hydrolysis. The hydrolysates obtained after 3 h of incubation with protease, papain, trypsin, α-chymotrypsin, and after 24 h with elastase were selected as the best products to analyze their functional properties. None of the hydrolysates exhibited antioxidant properties in the oil emulsion nor antimicrobial property at 20 mg/mL concentration. However, ovotransferrin with α-chymotrypsin and with elastase had higher Fe3+-chelating activities (1.06±0.88%, 1.25±0.24%) than the native ovotransferrin (0.46±0.60%). Overall, the results indicated that the single-enzyme treatments of ovotransferrin were not effective to produce peptides with antioxidant, antimicrobial, or Fe3+-chelating activity. Further research on the effects of enzyme combinations may be needed.

Comparison of Functional Properties of Blood Plasma Collected from Black Goat and Hanwoo Cattle

  • Shine Htet Aung;Edirisinghe Dewage Nalaka Sandun Abeyrathne;Mahabbat Ali;Dong Uk Ahn;Young-Sun Choi;Ki-Chang Nam
    • Food Science of Animal Resources
    • /
    • v.43 no.1
    • /
    • pp.46-60
    • /
    • 2023
  • Slaughterhouse blood is a by-product of animal slaughter that can be a good source of animal protein. This research purposed to examine the functional qualities of the blood plasma from Hanwoo cattle, black goat, and their hydrolysates. Part of the plasma was hydrolyzed with proteolytic enzymes (Bacillus protease, papain, thermolysin, elastase, and α-chymotrypsin) to yield bioactive peptides under optimum conditions. The levels of hydrolysates were evaluated by 15% sodium dodecyl sulfate polyacrylamide gel electrophoresis. The antioxidant, metal-chelating, and angiotensin I-converting enzyme (ACE) inhibitory properties of intact blood plasma and selected hydrolysates were investigated. Accordingly, two plasma hydrolysates by protease (pH 6.5/55℃/3 h) and thermolysin (pH 7.5/37℃/3-6 h) were selected for analysis of their functional properties. In the oil model system, only goat blood plasma had lower levels of thiobarbituric acid reactive substances than the control. The diphenyl picrylhydrazyl radical scavenging activity was higher in cattle and goat plasma than in proteolytic hydrolysates. Ironchelating activities increased after proteolytic degradation except for protease-treated cattle blood. Copper-chelating activity was excellent in all test samples except for the original bovine plasma. As for ACE inhibition, only non-hydrolyzed goat plasma and its hydrolysates by thermolysin showed ACE inhibitory activity (9.86±5.03% and 21.77±3.74%). In conclusion, goat plasma without hydrolyzation and its hydrolysates can be a good source of bioactive compounds with functional characteristics, whereas cattle plasma has a relatively low value. Further studies on the molecular structure of these compounds are needed with more suitable enzyme combinations.

ACE-inhibitory Effect and Physicochemical Characteristics of Yogurt Beverage Fortified with Whey Protein Hydrolysates

  • Lim, Sung-Min;Lee, Na-Kyoung;Park, Keun-Kyu;Yoon, Yoh-Chang;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.31 no.6
    • /
    • pp.886-892
    • /
    • 2011
  • This study investigated the ACE-inhibitory effect of yogurt beverage fortified with hydrolysates as well as the suitability of hydrolysates as a nutraceutical additive to yogurt beverage. Three whey protein hydrolysates hydrolyzed by alcalase, protamex, and trypsin were each added to yogurt beverage at concentrations of 1.25, 2.5, and 5 mg/mL. Yogurt beverage fortified with 2.5 mg/mL of hydrolysates had 61-69% ACE-inhibitory activity, whereas yogurt beverage fortified with 5 mg/mL of hydrolysates showed 74% ACE-inhibitory activity. There were no significant differences in ACE-inhibitory activity between the alcalase or protamex hydrolysates during storage; however, trypsin hydrolysate exhibited significant differences. On the other hand, physicochemical characteristics such as pH (3.47-3.77), titratable acidity (0.81-0.84%), colority, viable cell count, and sensory qualities were not significantly different among the tested yogurt beverage samples during storage. These results showed that yogurt beverage fortified with whey protein hydrolysates maintained antihypertensive activity and underwent no unfavorable changes in physicochemical characteristics regardless of enzyme type.