• Title/Summary/Keyword: enzyme denaturation

Search Result 52, Processing Time 0.019 seconds

Enzymatic Hydrolysis of Gelatin Layers of X-Ray Films and Release of Silver Particles Using Keratinolytic Serine Proteases from Purpureocillium lilacinum LPS # 876

  • Cavello, Ivana A.;Hours, Roque A.;Cavalitto, Sebastian F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1133-1139
    • /
    • 2013
  • Enzymatic decomposition of gelatin layers on used X-ray films and repeated utilization of the enzyme for potential application in silver recovery were investigated using keratinolytic serine proteases from Purpureocillium lilacinum LPS # 876. At pH 9.0, the enzymatic reaction was enhanced by the increase of enzyme concentration or by the increase of the temperature up to $60^{\circ}C$. Under the conditions of 6.9 U/ml, $60^{\circ}C$, and pH 9.0, hydrolysis of the gelatin layers and the resulting release of silver particles were achieved within 6 min. The protective effect of polyols against thermal denaturation was investigated. The presence of glycerol and propylene glycol increased enzyme stability. When the reusability of the enzyme for gelatin hydrolysis was tested, it could be seen that it could be effectively reused for more cycles when glycerol was added, compared with the enzyme without protective agents. The results of these repeated treatments suggested that a continuous process of recycling silver from used X-ray is feasible. Keeping in mind that recycling is (at the present time) needed and imperative, it can be remarked that, in this research, three wastes were successfully used: hair waste in order to produce serine proteases; glycerol in order to enhance enzyme thermal stability; and used X-ray films in order to recover silver and PET films.

Acid and Chemical Induced Conformational Changes of Ervatamin B. Presence of Partially Structured Multiple Intermediates

  • Sundd, Monica;Kundu, Suman;Jagannadham, Medicherla V.
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.143-154
    • /
    • 2002
  • The structural and functional aspects of ervatamin B were studied in solution. Ervatamin B belongs to the $\alpha+\beta$ class of proteins. The intrinsic fluorescence emission maximum of the enzyme was at 350 nm under neutral conditions, and at 355 nm under denaturing conditions. Between pH 1.0-2.5 the enzyme exists in a partially unfolded state with minimum or no tertiary structure, and no proteolytic activity. At still lower pH, the enzyme regains substantial secondary structure, which is predominantly $\beta$-sheet conformation and shows a strong binding to 8-anilino-1-napthalene-sulfonic acid (ANS). In the presence of salt, the enzyme attains a similar state directly from the native state. Under neutral conditions, the enzyme was stable in urea, while the guanidine hydrochloride (GuHCl) induced equilibrium unfolding was cooperative. The GuHCl induced unfolding transition curves at pH 3.0 and 4.0 were non-coincidental, indicating the presence of intermediates in the unfolding pathway. This was substantiated by strong ANS binding that was observed at low concentrations of GuHCl at both pH 3.0 and 4.0. The urea induced transition curves at pH 3.0 were, however, coincidental, but non-cooperative. This indicates that the different structural units of the enzyme unfold in steps through intermediates. This observation is further supported by two emission maxima in ANS binding assay during urea denaturation. Hence, denaturant induced equilibrium unfolding pathway of ervatamin B, which differs from the acid induced unfolding pathway, is not a simple two-state transition but involves intermediates which probably accumulate at different stages of protein folding and hence adds a new dimension to the unfolding pathway of plant proteases of the papain superfamily.

Conformational and Structural Changes of Choline Oxidase from Alcaligenes Species by Changing pH Values

  • Hekmat, A.;Saboury, A. A.;Divsalar, A.;Khanmohammadi, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1510-1518
    • /
    • 2008
  • Results of intrinsic and extrinsic fluorescence studies on choline oxidase revealed that the enzyme at high alkaline pH values has more accessible hydrophobic patches relative to acidic pH. Fluorescence quenching studies with acrylamide confirm these changes. The quenching constants were also determined at different pH(s) by using the Stern-Volmer equation. CD studies showed that at higher pH a transition from $\alpha$-helix to $\beta$- structure was appeared while at lower pH the content of $\alpha$-helix structure was increased. Furthermore, analysis of the spectral data using chemometric method gave evidence for existence of intermediate components at very high pH(s). Results of thermal denaturation evaluated that the enzyme has the most instability at higher pH(s). Altogether low and high pH values caused significant alteration on secondary and tertiary structures of choline oxidase via inducing of an intermediate.

Catalytic Properties of Monomeric Species of Brain Pyridoxine-5'-phosphate Oxidase

  • Kwon, Oh-Shin;Choi, Soo-Young
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.21-27
    • /
    • 2001
  • The structural stability of brain pyrydoxine-5'-phosphate (PNP) oxidase and the catalytic properties of the monomeric species were investigated. The unfolding of brain pyridoxine-5'-phosphate (PNP) oxidase by guanidine hydrochloride (GuHCl) was monitored by means of fluorescence and circular dichroism spectroscopy Reversible dissociation of the dimeric enzyme into subunits was attained by the addition of 2 M GuHCl. The perturbation of the secondary structure under the denaturation condition resulted in the release of the cofactor FMN. Separation of the processes of refolding and reassociation of the monomeric species was achieved by the immobilization method. Dimeric PNP oxidase was immobilized by the covalent attachment to Affi-gel 15 without any significant lass of its catalytic activity. Matrix-bound monomeric species were obtained from the reversible refolding processes. The matrix bound-monomer was found to be catalytically active, possessing only a slightly decreased specific activity when compared to the refolded dimeric enzyme. In addition, limited chymotrypsin digestion of the oxidase yields two fragments of 12 and 161 kDa with a concomitant increase of catalytic activity The catalytically active fragment was isolated by ion exchange chromatography and analyzed for association of two subunits using the FPLC gel filtration analysis. The retention time indicated that the catalytic fragment of 16 kDa behaves as a compact monomer. Taken together, these results are consistent with the hypothesis that the native quaternary structure of PNP oxidase is not a prerequisite for catalytic function, but it could play a role in the regulation.

  • PDF

Heterologous Expression of Recombinant Transglutaminase in Bacillus subtilis SCK6 with Optimized Signal Peptide and Codon, and Its Impact on Gelatin Properties

  • Wang, Shiting;Yang, Zhigang;Li, Zhenjiang;Tian, Yongqiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1082-1091
    • /
    • 2020
  • Microbial transglutaminases (MTGs) are widely used in the food industry. In this study, the MTG gene of Streptomyces sp. TYQ1024 was cloned and expressed in a food-grade bacterial strain, Bacillus subtilis SCK6. Extracellular activity of the MTG after codon and signal peptide (SP Ync M) optimization was 20 times that of the pre-optimized enzyme. After purification, the molecular weight of the MTG was 38 kDa and the specific activity was 63.75 U/mg. The optimal temperature and pH for the recombinant MTG activity were 50℃ and 8.0, respectively. MTG activity increased 1.42-fold in the presence of β-ME and 1.6-fold in the presence of DTT. Moreover, 18% sodium chloride still resulted in 83% enzyme activity, which showed good salt tolerance. Cross-linking gelatin with the MTG increased the strength of gelatin 1.67 times and increased the thermal denaturation temperature from 61.8 to 75.8℃. The MTG also significantly increased the strength and thermal stability of gelatin. These characteristics demonstrated the huge commercial potential of MTG, such as for applications in salted protein foods.

Inactivation Study of Pyridine-Linked Dehydrogenases by $N^1$-Alkylnicotinamide Chlorides ($N^1$-Alkylnicotinamide Chloride 유도체에 의한 탈수소 효소의 불활성화에 관한 연구)

  • Kim Soo-Ja;Lee Hyun Jae
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.406-416
    • /
    • 1976
  • A series of $N^1$-alkylnicotinamide chlorides, $N^1$-methyl-to $N^1$-dodecylnicotinamides inclusive were studied with rabbit muscle L-${\alpha}$-glycerophosphate dehydrogenase to investigate the possibility of reversible and irreversible inactivation of the pyridine-linked dehydrogenases by the coenzyme-competitive inhibitor derivatives. The inhibition of the enzyme by $N^1$-alkylnicotinamide chlorides was demonstrated to be reversible at the dilute concentration of the inhibitors but this reversible inhibition was found to be followed by an irreversible time-dependent inactivation measuable at high concentrations of the inhibitors. The properties of this time-dependent inactivation were discussed on the basis of the denaturation of the enzyme by the binding of small micelle-like structures formed at higher concentrations of the inhibitors.

  • PDF

Production and Preservation of $\alpha$-Amylase from Bacillus sp. Y-124 (Bacillus sp. Y-124로부터 $\alpha$-Amylase의 생산 및 그 보존성에 관한 연구)

  • Jun, Hong-Ki;Yeehn Yeeh;Lee, Jong-Kune
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.3
    • /
    • pp.145-152
    • /
    • 1981
  • Microorganisms from the waste water of starch industry, were isolated and a strain, Y-124, possessing a powerful enzymic activity was selected and identified as a member of the genus Bacillus. The ideal cultural condition for the formation of $\alpha$-amylase form Bacillus Y-124 and its preservation was investigated in connection with the biotechnological and industrial approach to the bulk enzyme production. High yield of $\alpha$-amylase was observed in medium containing casein as well as calcium pantothenate in this work. Calcium ions were found to have an effect in forming this particular enzyme. Ammonium phosphate dibasic was an important inorganic nitrogen source for the formation of $\alpha$-amylase. And preservation of this enzyme was greatly affected by calcium or sodium salts. The addition of calcium carbonate or sodium sulfate presented the most effective result for the prevention of its denaturation to various factors. The above data was obtained with crude enzyme preparation.

  • PDF

Treatment of Genomic DNA with Restriction Enzyme(s) Improves Amplification Efficiency by Polymerase Chain Reaction (제한효소 처리된 Genomic DNA에 의한 Polymerase Chain Reaction 증폭 효율에 관한 연구)

  • Min Hae-Ki;Chang Young-Hyo
    • Korean Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.254-256
    • /
    • 2004
  • Polymerase chain reaction (PCR) is a powerful tool for precisely amplifying selected DNA sequences that have had a broad impact on genomic studies. When examining human $\alpha$- and $\beta$- tryptase genes which have 95% DNA homology, inconsistent PCR amplification of genomic sequences hampered our progress. This study suggests that long PCR technique on the original DNA digested with restriction enzymes improves both efficiency and sensitivity of PCR. These improved results seem to derived from the effective denaturation of the original genomic DNA template or reduction of formation of secondary structures that block either primer annealing or extension in PCR. Elimination of homo- or hetero-duplex products derived from highly homologous genes provides an additional advantage in this study. This communication describes how the use of restriction enzymes improved these efficiencies, and also facilitated studies of highly homologous genes including tryptase genes.

Nucleotide Sequence, Structural Investigation and Homology Modeling Studies of a Ca2+-independent α-amylase with Acidic pH-profile

  • Sajedi, Reza Hassan;Taghdir, Majid;Naderi-Manesh, Hossein;Khajeh, Khosro;Ranjbar, Bijan
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.315-324
    • /
    • 2007
  • The novel $\alpha$-amylase purified from locally isolated strain, Bacillus sp. KR-8104, (KRA) (Enzyme Microb Technol; 2005; 36: 666-671) is active in a wide range of pH. The enzyme maximum activity is at pH 4.0 and it retains 90% of activity at pH 3.5. The irreversible thermoinactivation patterns of KRA and the enzyme activity are not changed in the presence and absence of $Ca^{2+}$ and EDTA. Therefore, KRA acts as a $Ca^{2+}$-independent enzyme. Based on circular dichroism (CD) data from thermal unfolding of the enzyme recorded at 222 nm, addition of $Ca^{2+}$ and EDTA similar to its irreversible thermoinactivation, does not influence the thermal denaturation of the enzyme and its Tm. The amino acid sequence of KRA was obtained from the nucleotide sequencing of PCR products of encoding gene. The deduced amino acid sequence of the enzyme revealed a very high sequence homology to Bacillus amyloliquefaciens (BAA) (85% identity, 90% similarity) and Bacillus licheniformis $\alpha$-amylases (BLA) (81% identity, 88% similarity). To elucidate and understand these characteristics of the $\alpha$-amylase, a model of 3D structure of KRA was constructed using the crystal structure of the mutant of BLA as the platform and refined with a molecular dynamics (MD) simulation program. Interestingly enough, there is only one amino acid substitution for KRA in comparison with BLA and BAA in the region involved in the calcium-binding sites. On the other hand, there are many amino acid differences between BLA and KRA at the interface of A and B domains and around the metal triad and active site area. These alterations could have a role in stabilizing the native structure of the loop in the active site cleft and maintenance and stabilization of the putative metal triad-binding site. The amino acid differences at the active site cleft and around the catalytic residues might affect their pKa values and consequently shift its pH profile. In addition, the intrinsic fluorescence intensity of the enzyme at 350 nm does not show considerable change at pH 3.5-7.0.

Immobilization of Fungal Laccase on Keratin-Coated Soil and Glass Matrices

  • Ginalska, G.;Lobarzewski, J.;Cho, Nam-Seok;Choi, T.H.;Ohga, S.;Jaszek, M.;Leonowicz, A.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.112-122
    • /
    • 2001
  • Laccase enzymes from Cerrena unicolor and Trametes versicolor were immobilized on the activated glass beads (CPG), silica gel (SG) and soil (SL). The heterogeneous matrices were activated by ${\gamma}$-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA), and their surfaces were coated by keratin (KER) on activated or non-activated CPG, SG and SL. The laccase activities were tested in the aqueous solution for the native and immobilized preparations using different pH and temperature conditions. By keratin coating on supports, in the cases of CPG-KER and SL-KER, the immobilization yield was increased from about 80% to 90%. Moreover, much less protein was immobilized in keratin coated matrices than in inorganic ones alone (e.g. on CPG-KER 57.6%, whereas on CPG alone 80.6%). Laccase immobilization on keratin coated inorganic matrices was generally more effective than that of non-coated matrices. Concerned to pH dependency, the optima pH for immobilized laccases generally shifted towards to higher values, 5.5-5.8 and even 5.9 in the case of keratin for C. unicolor and from 5.3 to 5.7 for T. versicolor, respectively, and decreased less gradually both in acidic and alkaline regions. The immobilized laccase was more stable against thermal denaturation. This seems particularly true at $75^{\circ}C$ in the case of C. unicolor, where the activity of immobilized enzyme is > 50% higher than that of the free enzyme. For T. versicolor the respective values were $65^{\circ}C$, and 50%.

  • PDF