• 제목/요약/키워드: enzymatic pretreatment

검색결과 181건 처리시간 0.024초

바이오에탄올 생산을 위한 폐MDF의 전처리 및 효소 당화 (Pretreatment and Enzymatic Saccharification of Wasted MDF for Bioethanol Production)

  • 강양래;황진식;배기한;조훈호;이은정;조영손;남기두
    • KSBB Journal
    • /
    • 제30권6호
    • /
    • pp.332-338
    • /
    • 2015
  • The objective of this study was designed to determine the possibility of bioethanol production from wasted medium density fiberboard (wMDF). We were investigated the enzymatic saccharification characteristics using the enzyme (Cellic CTec3) after pretreatment with sodium chlorite. According to the component analysis results, the lignin contents before and after the pretreatment of wMDF (milling using sieve size of $1,000{\mu}m$) was significantly reduced from 31.13% to 4.11%. Therefore, delignification ratio of pretreated wMDF was found to be up to about 87-89% depending on the sieve size. And we were tested to compare the saccharification ratio according to the sieve size of wMDF ($1,000{\mu}m$, $200{\mu}m$), but it was no significance depending on the sieve size. When enzyme dosage was 5% based on the substrate concentration, enzymatic saccharification ratio was obtained up to 70% by maintaining at $50^{\circ}C$ for 72 hours. We could made the substrate concentration of pretreated wMDF ($1,000{\mu}m$) up to 12% and then enzymatic saccharification ratio was 76.8%, also contents of glucose and xylose were analyzed to 77,750 and 14,637 mg/L, respectively.

억새 바이오매스 전처리에서 압출 처리가 액상 암모니아 침지 처리에 미치는 영향 (The Effect of Extrusion Treatment on Aqueous Ammonia Soaking Method in Miscanthus Biomass Pretreatment)

  • 박선태;구본철;최용환;문윤호;안승현;차영록;김중곤;안기홍;서세정;박돈희
    • 신재생에너지
    • /
    • 제6권4호
    • /
    • pp.6-14
    • /
    • 2010
  • Pretreatment of cellulosic biomass is necessary before enzymatic saccharification and fermentation. Extrusion is a well established process in food industries and it can be used as a physicochemical treatment method for cellulosic biomass. Aqueous ammonia soaking treatment at mild temperatures ranging from 60 to $80^{\circ}C$ for longer reaction times has been used to preserve most of the cellulose and hemicellulose in the biomass. The objective of this study was to evaluate the effect of extrusion treatment on aqueous ammonia soaking method. Extrusion was performed with miscanthus sample conditioned to 2mm of particle size and 20% of moisture content at $200^{\circ}C$ of barrel temperature and 175rpm of screw speed. And then aqueous ammonia soaking was performed with 15%(w/w) ammonia solution at $60^{\circ}C$ for 1, 2, 4, 8, 12 hours on the extruded and raw miscanthus samples respectively. In the combined extrusion-soaking treatment, most compositions removal occurred within 1~2 hours and on a basis of 1 hour soaking treatment values, cellulose was recovered about 85% and other compositions, including hemicellulose, are removed about 50% from extruded miscanthus sample. The combined extrusion-soaking treated and soaking only treated samples were subjected to enzymatic hydrolysis using cellulase and ${\beta}$-glucosidase. The enzymatic digestibility value of combined extrusion-2 hours soaking treated sample was comparable to 12 hours soaking only treated sample. It means that extrusion treatment can shorten the conventional long reaction time of aqueous ammonia soaking. The findings suggest that the combination of extrusion and soaking is a promising pretreatment method to solve both problems for no lignin removal of extrusion and long reaction time of aqueous ammonia soaking.

섬유소계 바이오매스의 분별을 위한 다양한 알칼리 전처리 특성 (The Characteristics of Alkaline Pretreatment Methods of Cellulosic Biomass)

  • 김준석
    • Korean Chemical Engineering Research
    • /
    • 제51권3호
    • /
    • pp.303-307
    • /
    • 2013
  • 이 연구는 목질계 바이오매스에 대한 알칼리 용액의 침지와 침출 전처리의 효능을 비교한다. 볏짚과 보리짚과 같은 다양한 바이오매스는 수산화나트륨 용액, 수산화칼륨 용액, 암모니아수 그리고 탄산나트륨 용액에 의해 침지 공정으로 수행되었다. 암모니아수에 의해 전처리된 볏짚과 보리짚의 효소 소화율은 80% 이상으로 나타났다. 전처리된 유칼립투스 부산물, 낙엽송 그리고 리기다 소나무의 효소 소화율은 상대적으로 낮은 범위로 나왔다. 하지만 전처리된 유칼립투스 부산물은 초기 바이오매스에 비해 효소 소화율이 약 5배 증가되었다. 또한 침출 공정으로 전처리된 유칼립투스 부산물의 효소 소화율은 약 12배가 증가되는 것을 확인하였다.

Ionic Liquid Pretreatment of Lignocellulosic Biomass

  • Han, Song-Yi;Park, Chan-Woo;Kwon, Gu-Joong;Kim, Nam-Hun;Kim, Jin-Chul;Lee, Seung-Hwan
    • Journal of Forest and Environmental Science
    • /
    • 제36권2호
    • /
    • pp.69-77
    • /
    • 2020
  • Lignocellulosic biomass has recalcitrant characteristics against chemical and biological conversion due to its structural heterogeneity and complexity. The pretreatment process to overcome these recalcitrant properties is essential, especially for the biochemical conversion of lignocellulosic biomass. In recent years, pretreatment methods using ionic liquids (ILs) and deep eutectic solvents (DESs) as the green solvent has attracted great attention because of their advantages such as easy recovery, chemical stability, temperature stability, nonflammability, low vapor pressure, and wide liquids range. However, there are some limitations such as high viscosity, poor economical feasibility, etc. to be solved for practical use. This paper reviewed the research activities on the pretreatment effect of various ILs including DESs and their co-solvents with organic solvents on the enzymatic saccharification efficiency of lignocellulosic biomass and the nanocellulose preparation from the pretreated products.

목질계 바이오에탄올 생산의 전처리 기술에 관한 연구동향 (A Research Trend of Pretreatment in Bioethanol Production Process with Lignocellulosic Biomass: A Literature Review)

  • 김영숙
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권3호
    • /
    • pp.274-286
    • /
    • 2009
  • 목질바이오매스 원료는 구성성분 특성 및 분포상 생물 화학적 전환에 매우 큰 장애요소를 지니고 있다. 특히 셀룰로우스를 이용하고자 하는 경우의 리그닌 장애는 해결해야 할 중요한 요소로 인식되고 있어 바이오에탄올 생산에서도 당화공정에 앞서 전처리 공정이 필연적이며 최종 에탄올 수율 및 생산비용에도 영향이 커서 다양한 전처리 방법들이 제안되고 있는 상황이다. 본 총설은 문헌연구를 통하여 최근 세계적으로 진행되고 있는 목질바이오매스 대상의 전처리 연구에 대한 동향을 파악하고, 이들 전처리공정의 특징 및 장단점을 분석하여 국내 목질바이오매스 원료 및 생산여건에 적합한 공정 연구 개발에 필요한 기초자료를 마련하고자 하였다. 국내외적으로 활발하게 연구되는 주요 전처리 기술은 각각 공정 및 경제성 면에서 장단점이 있어 원료나 생산여건 환경에 따라 적합한 전처리 공정을 선택해야 할 필요가 있는 것으로 고찰되었다.

Organosolv 전처리를 통한 리기다소나무의 바이오에탄올 생산 적용성 평가 (Evaluation of Pitch Pine for Bioethanol Production by Organosolv Pretreatment)

  • 유원재;김용식;강규영
    • 펄프종이기술
    • /
    • 제47권4호
    • /
    • pp.21-29
    • /
    • 2015
  • In this study, the feasibility of utilizing wood chips from pitch pine (Pinus rigida) was evaluated for bioethanol production by an organosolv pretreatment and enzymatic saccharification. When wood chips from pitch wood were pretreated with 75% (v/v) ethanol and 1.7% sulfuric acid as a catalyst at H-factor 2000, average pulp yield was 43.3%, which pretreated wood fibers showed higher glucan (55.8%) and lower lignin (12.2%) contents than untreated control (43.9% glucan and 27.8% lignin). After enzymatic saccharification, the organosolv pulps with 56.2% delignification rate reached above 97% conversion rate of cellulose to glucose. These results indicated that increasing the delignification rate causes micro pores on the surface of organosolv pulps resulting in improved the accessibility of enzyme onto the substrate. Moreover, it was in agreement with the SEM examination of wood fibers.

Nitrogen Adsorption Analysis of Wood Saccharification Residues

  • Yang, Han-Seung;Tze, William Tai Yin
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권2호
    • /
    • pp.232-242
    • /
    • 2017
  • The objective of this study was to examine changes in the porosity and internal structure of wood as it goes through the process of saccharification (extraction of fermentable sugars). This study also examined the use of different drying methods to prepare samples for characterization of internal pores, with particular emphasis on the partially disrupted cell wall. Aspen wood flour samples after dilute acid pretreatment followed by enzymatic hydrolysis were examined for nitrogen adsorption. The resulting isotherms were analyzed for surface area, pore size distribution, and total pore volume. Results showed that freeze drying (with sample pre-freezing) maintains the cell wall structure, allowing for examination of saccharification effects. Acid pretreatment (hemicellulose removal) doubled the surface area and tripled the total volume of pores, which were mostly 10-20 nm wide. Subsequent enzymatic hydrolysis (cellulose removal) caused a 5-fold increase in the surface area and a ~ 11-fold increase in the total volume of pores, which ranged from 5 to 100 nm in width. These results indicate that nitrogen adsorption analysis is a feasible technique to examine the internal pore structure of lignocellulosic residues after saccharification. The information on the pore structure will be useful when considering value-adding options for utilizing the solid waste for biofuel production.

알칼리 처리에 따른 폐골목 및 굴참나무의 효소당화 특성 비교 (Comparison of enzymatic hydrolysis characteristics of mushroom culutured waste (MCW) and Cork oak by alkali treatment)

  • 윤수영;성현아;신수정
    • 펄프종이기술
    • /
    • 제46권3호
    • /
    • pp.44-49
    • /
    • 2014
  • The mushroom cultured waste(MCW) from cork oak was evaluated as the raw material for bioethanol production. For enzymatic hydrolysis, cellulase cocktails (Celluclast 1.5L and Novozym 188) was used for polysaccharides to monosaccharides conversion. Compared with sound cork oak woodmeal, woodmeal from MCW showed higher cellulose to glucose conversion. To improve polysaccharides to monosaccharides conversion, pretreatment by sodium hydroxide was applied. Even though more xylan and lignin were removed in woodmeal of MCW than that of cork oak, concentration of glucose was higher from sodium hydroxide treated cork oak woodmeal (51.3 g/L) than treated MCW woodmeal (41.6 g/L).

자기가수분해 처리가 산업용 대마 목부 바이오매스의 효소 당화에 미치는 영향 (Enzymatic saccharification of autohydrolyzed industrial hemp (Cannabis sativa L.) lignocellulosic biomass)

  • 신수정;유주현;이수민;조남석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.74-76
    • /
    • 2008
  • Autohydrolysis at different temperature levels was applied as industrial hemp pretreatment technique for glucose generation. Main structural components removed by autohydrolysis was xylan, which is more sensitive in acidic hydrolysis condition than cellulose or lignin. Higher temperature reaction conditions promoted more biomass components (xylan) removal than lower temperature, which led to better respond to enzymatic saccharification of residual biomass after autohydrolysis. With $185^{\circ}C$ and 60 min, saccharification degree was 53.0% of cellulose in hemp woody core biomass.

  • PDF

Biological Pretreatment of Softwood Pinus densiflora by Three White Rot Fungi

  • Lee, Jae-Won;Gwak, Ki-Seob;Park, Jun-Yeong;Park, Mi-Jin;Choi, Don-Ha;Kwon, Mi;Choi, In-Gyu
    • Journal of Microbiology
    • /
    • 제45권6호
    • /
    • pp.485-491
    • /
    • 2007
  • The effects of biological pretreatment on the Japanese red pine Pinus densiflora, was evaluated after exposure to three white rot fungi Ceriporia lacerata, Stereum hirsutum, and Polyporus brumalis. Change in chemical composition, structural modification, and their susceptibility to enzymatic saccharification in the degraded wood were analyzed. Of the three white rot fungi tested, S. hirsutum selectively degraded the lignin of this sortwood rather than the holocellulose component. After eight weeks of pretreatment with S. hirsutum, total weight loss was 10.7%, while lignin loss was the highest at 14.52% among the tested samples. However, holocellulose loss was lower at 7.81 % compared to those of C. lacerata and P. brumalis. Extracelluar enzymes from S. hirsutum showed higher activity of ligninase and lower activity of cellulase than those from other white rot fungi. Thus, total weight loss and changes in chemical composition of the Japanese red pine was well correlated with the enzyme activities related with lignin- and cellulose degradation in these fungi. Based on the data obtained from analysis of physical characterization of degraded wood by X-ray Diffractometry (XRD) and pore size distribution, S. hirsutum was considered as an effective potential fungus for biological pretreatment. In particular, the increase of available pore size of over 120 nm in pretreated wood powder with S. hirsutum made enzymes accessible for further enzymatic saccharification. When Japanese red pine chips treated with S. hirsutum were enzymatically saccharified using commercial enzymes (Cellulclast 1.5 L and Novozyme 188), sugar yield was greatly increased (21.01 %) compared to non-pre treated control samples, indicating that white rot fungus S. hirsutum provides an effective process in increasing sugar yield from woody biomass.