• Title/Summary/Keyword: environmentally friendly agricultural products

Search Result 74, Processing Time 0.026 seconds

Color Change and Consumer Preferences towards Color of Heat-Treated Korean White Pine and Royal Paulownia Woods

  • Hidayat, Wahyu;Qi, Yue;Jang, Jae Hyuk;Park, Byung Ho;Banuwa, Irwan Sukri;Febrianto, Fauzi;Kim, Nam Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.213-222
    • /
    • 2017
  • Heat treatment of wood is an attractive alternative environmentally-friendly treatment to add value of less valuable woods by improving color, dimensional stability, and natural durability. To improve the color properties of Korean white pine (Pinus koraiensis) and royal paulownia (Pauwlonia tomentosa), we treated the woods at $160^{\circ}C$, $180^{\circ}C$, $200^{\circ}C$, and $220^{\circ}C$ for 2 hours. Color change after heat treatment was evaluated using the CIE-Lab color system and survey was conducted to determine the consumer preferences towards color of heat-treated wood. Lightness ($L^*$) decreased with increasing temperature and the higher degree of change was obtained in royal paulownia. The red/green chromaticity ($a^*$) in both wood decreased after heat treatment at $160^{\circ}C$, and constantly increased after heat treatment at $180^{\circ}C$ to $220^{\circ}C$. Yellow/blue chromaticity ($b^*$) in Korean white pine tended to increase after heat treatment at $160^{\circ}C$, then decreased gradually afterwards. In royal paulownia, $b^*$ values linearly increased with increasing temperature. Overall color change (${\Delta}E^*$) increased with increasing temperature with higher degree obtained in royal paulownia. Samples with the clamps in both wood species showed lower degree of the change in $L^*$, $a^*$, b and ${\Delta}E^*$. The results of the consumer preferences test showed that the darker colors of heat-treated woods were more preferred by consumers compared to the lighter colors of untreated woods. Consequently, heat treatment could enhance the color properties of Korean white pine and royal paulownia woods for value added products.

Controlling Effect of Agricultural Organic Materials on Phytophthora Blight and Anthracnose in Red Pepper (고추 역병과 탄저병에 대한 친환경유기농자재의 방제 효과)

  • Park, Se-Jung;Kim, Ga-Hye;Kim, A-Hyeong;Lee, Ho-Taek;Gwon, Hyeon-Wook;Kim, Joo-Hyeng;Lee, Kyeong-Hee;Kim, Heung-Tae
    • Research in Plant Disease
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • A total of 20 agricultural organic materials including inorganic compounds, plant oils and plant extracts were used in the study for assessing the control efficacy on pepper diseases. Among inorganic compounds, only copper hydroxide showed inhibitory effect on both Phytophthora capsici causing Phytophthora blight and Colletotrichum acutatum causing anthracnose. Phosphorous acid inhibited the growth of P. capsici on PDA, and Sulfur/quicklime had it on that of C. acutatum. Plant essential oil, rosemary oil, and rapeseed oil among plant oils and plant extract of Japanese apricot/ginkgo nut inhibited the mycelial growth of the two pathogens. In the screening using pepper plant seedlings, the control efficacy on Phytophthora blight in 6-leaf stage of seedling was superior to that in 4-leaf stage of seedling. A protective effect on Phytophthora blight was displayed by copper hydroxide, sulfur/quicklime, water soluble calcium, phosphorous acid, plant essential oil, and cloves extract. When C. acutatum was inoculated by the non-wound method, copper hydroxide and rapeseed oil showed excellent protective activities with control values of 91.3% and 82.6%, respectively. However, copper hydroxide did not show any activity, when C. acutatum was inoculated after wounding pepper fruits. All organic materials never showed the curative effect on Phytophthora blight and anthracnose in pepper seedling assay and fruit assay.

Application of unmanned helicopter on pest management in rice cultivation (무인 항공기 이용 벼 병해충 방제기술 연구)

  • Park, K.H.;Kim, J.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.10 no.1
    • /
    • pp.43-58
    • /
    • 2008
  • This research was conducted to determine the alternative tool of chemical spray for rice cultivation using the unmanned helicopter(Yamaha, R-Max Type 2G-remote controlled system) at farmer's field in Korea. The unmanned helicopter tested was introduced form Japan. In Korea the application of chemicals by machine sprayer for pest management in rice cultivation has been ordinarily used at the farmer's level. However, it involved a relatively high cost and laborious for the small scale of cultivation per farm household. Farm population has been highly decreased to 7.5% in 2002 and the population is expected to rapidly reduce by 3.5% in 2012. In Japan, pest control depending on unmanned helicopter has been increased by leaps and bounds. This was due in part to the materialization of the low-cost production technology under agricultural policy and demand environmentally friendly farm products. The practicability of the unmanned helicopter in terms of super efficiency and effectiveness has been proven, and the farmers have understood that the unmanned helicopter is indispensable in the future farming system that they visualized. Also, the unmanned helicopter has been applied to rice, wheat, soybean, vegetables, fruit trees, pine trees for spraying chemicals and/or fertilizers in Japan Effect of disease control by unmanned helicopter was partially approved against rice blast and sheath blight. However, the result was not satisfactory due to the weather conditions and cultural practices. The spray density was also determined in this experiment at 0, 15, 30, and 60cm height from the paddy soil surface and there was 968 spots at 0cm, 1,560 spots at 15cm, 1,923 spots at 30cm, and 2,999 spots at 60cm height. However, no significant difference was found among the treatments. At the same time, there was no phytotoxicity observed under the chemical stray using this unmanned helicopter, nor the rice plant itself was damaged by the wind during the operation.

Effects of Applying Cattle Manure on Carrying Capacity of Organic Livestock per Unit Area of Summer Forage Crops (우분뇨 시용이 하계사료작물의 단위면적당 유기가축 사육능력에 미치는 영향)

  • Jo, Ik-Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.2
    • /
    • pp.185-198
    • /
    • 2011
  • This study was carried out to select a proper forage crop, and to estimate the proper level of application of cattle manure and carrying capacity of organic livestock per unit area. Corns and forage sorghum hybrids were cultivated with different types of livestock manures and different amount of them to produce organic forage. For both corns and forage sorghum hybrids, no fertilizer plots had significantly (p<0.05) lower annual dry matter (DM), crude protein (CP) and total digestible nutrients (TDN) yields than those of other plots, whereas the N-P-K (nitrogen-phosphorous-kalium) plots ranked the highest yields, followed by 150% cattle manure plots and 100% cattle manure plots. DM, CP and TDN yields of in cattle manure plots were significantly (p<0.05) higher than those of no fertilizer and P-K (phosphorous-kalium) plots. The yields of in cattle slurry plots tended to be a little higher than those of in composted cattle manure plots. Assuming that corn and forage sorghum hybrids produced from this trial were fed at 70% level to 450kg of Hanwoo heifer for 400g of average daily gain, the carrying capacity (head/year/ha) of livestock ranked the highest in 150% cattle slurry plots (mean 6.0 heads), followed by 100% cattle slurry plots (mean 5.3 heads), 150% composted cattle manure plots (mean 4.7 heads), 100% composted cattle manure plots (mean 4.4 heads), and no fertilizer plots (mean 2.8 heads) in corns (or the cultivation of corns). Meanwhile, in the case of forage sorghum hybrids, 150% cattle slurry plots (mean 6.4 heads) ranked the highest carrying capacity, followed by 150% composted cattle manure plots (mean 4.8 heads), 100% cattle slurry plots (mean 4.4 heads), 100% composted cattle manure plots (mean 4.1 heads), and no fertilizer plots (mean 2.8 heads). The results indicated that the application of livestock manure to cultivated soil could enhance not only DM and TDN yields, but also the carrying capacity of organic livestock as compared with the effect of chemical fertilizers. In conclusion, the production of organic forage with reutilized livestock manure will facilitate the reduction of environmental pollution and the production of environmentally friendly agricultural products by resource circulating system.