• Title/Summary/Keyword: environmental temperature

Search Result 9,982, Processing Time 0.04 seconds

Streamflow response to climate change during the wet and dry seasons in South Korea under a CMIP5 climate model (CMIP5 기반 건기 및 우기 시 국내 하천유량의 변화전망 및 분석)

  • Ghafouri-Azar, Mona;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1091-1103
    • /
    • 2018
  • Having knowledge regarding to which region is prone to drought or flood is a crucial issue in water resources planning and management. This could be more challenging when the occurrence of these hazards affected by climate change. In this study the future streamflow during the wet season (July to September) and dry season (October to March) for the twenty first century of South Korea was investigated. This study used the statistics of precipitation, maximum and minimum temperature of one global climate model (i.e., INMCM4) with 2 RCPs (RCP4.5 and RCP8.5) scenarios as inputs for The Precipitation-Runoff Modelling System (PRMS) model. The PRMS model was tested for the historical periods (1966-2016) and then the parameters of model were used to project the future changes of 5 large River basins in Korea for three future periods (2025s, 2055s, and 2085s) compared to the reference period (1976-2005). Then, the different responses in climate and streamflow projection during these two seasons (wet and dry) was investigated. The results showed that under INMCM4 scenario, the occurrence of drought in dry season is projected to be stronger in 2025s than 2055s from decreasing -7.23% (-7.06%) in 2025s to -3.81% (-0.71%) in 2055s for RCP4.5 (RCP8.5). Regarding to the far future (2085s), for RCP 4.5 is projected to increase streamflow in the northern part, and decrease streamflow in the southern part (-3.24%), however under RCP8.5 almost all basins are vulnerable to drought, especially in the southern part (-16.51%). Also, during the wet season both increasing (Almost in northern and western part) and decreasing (almost in the southern part) in streamflow relative to the reference period are projected for all periods and RCPs under INMCM4 scenario.

Water Quality Monitoring of the Ecological Pond Constructed by LID Technique in Idle Space (유휴 공간에 LID 기법을 활용한 생태연못의 수질 모니터링)

  • Ahn, Chang-Hyuk;Song, Ho-Myeon;Park, Joon-Ha;Park, Jum-Ok;Park, Jae-Roh
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.674-684
    • /
    • 2018
  • The purpose of this study is to construct ecological pond using LID technique in order to create naturally comfortable community space in urban idle space. The specification of the ecological pond is $110m^2$ of surface area, $0.45{\pm}0.02m$ of average depth, and bed material is composed of gravel (diameter ${\leq}60mm$), sand (diameter ${\leq}2mm$) and bentonite. Rainfall and water depth monitoring were conducted to determine the annual characteristics of inflow of the water for the ecological pond, result of total rainfall was 1,287 mm and showed a seasonal imbalance that accounted for 71.3% (918 mm) during July to August, but the annual mean water depth was kept constant at $0.45{\pm}0.02m$ due to the secondary water source. Annual trends of basic water quality showed a significant changes according to the season, such as water temperature ($5.2{\sim}28.8^{\circ}C$), DO (5.0 ~ 13.8 mg/L), EC ($113{\sim}265{\mu}S/cm$). BOD, COD, TN, and TP in physicochemical water quality tended to increase after October, but the ion parameters such as $NH_3$ and $PO_4{^{3-}}$ were generally low. Phytoplankton indicators Chl-a and BGA (blue green algae) showed a sharp increase from July to August, and green algae (Selenastrum bibraianum, Pediastrum boryanum etc.) and filamentous blue green algae (Phormidium sp.) emerged as a dominant species. The ion parameters ($F^-$, $Na^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$) were strongly correlated with the $Cl^-$ as a conservative substance (R=0.70~0.97, p<0.05). Water quality was influenced by the ambient environment such as seasonal changes or rainfall, and it was closely related to fluctuation of the inflow of the water. In the future, it is necessary to consider ecological connections by referring to the characteristics surveyed in this study in order to effectively manage the water quality and biodiversity of the ecological pond in idle space.

Coarse Woody Debris (CWD) Respiration Rates of Larix kaempferi and Pinus rigida: Effects of Decay Class and Physicochemical Properties of CWD (일본잎갈나무와 리기다소나무 고사목의 호흡속도: 고사목의 부후등급과 이화학적 특성의 영향)

  • Lee, Minkyu;Kwon, Boram;Kim, Sung-geun;Yoon, Tae Kyung;Son, Yowhan;Yi, Myong Jong
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.1
    • /
    • pp.40-49
    • /
    • 2019
  • Coarse woody debris (CWD), which is a component of the forest ecosystem, plays a major role in forest energy flow and nutrient cycling. In particular, CWD isolates carbon for a long time and is important in terms of slowing the rate of carbon released from the forest to the atmosphere. Therefore, this study measured the physiochemical characteristics and respiration rate ($R_{CWD}$) of CWD for Larix kaempferi and Pinus rigida in temperate forests in central Korea. In summer 2018, CWD samples from decay class (DC) I to IV were collected in the 14 forest stands. $R_{CWD}$ and physiochemical characteristics were measured using a closed chamber with a portable carbon dioxide sensor in the laboratory. In both species, as CWD decomposition progressed, the density ($D_{CWD}$) of the CWD decreased while the water content ($WC_{CWD}$) increased. Furthermore, the carbon concentrations did not significantly differ by DC, whereas the nitrogen concentration significantly increased and the C/N ratio decreased. The respiration rate of L. kaempferi CWD increased significantly up to DC IV, but for P. rigida it increased to DC II and then unchanged for DC II-IV. Accordingly, except for carbon concentration, all the measured characteristics showed a significant correlation with $R_{CWD}$. Multiple linear regression showed that $WC_{CWD}$ was the most influential factor on $R_{CWD}$. $WC_{CWD}$ affects $R_{CWD}$ by increasing microbial activity and is closely related to complex environmental factors such as temperature and light conditions. Therefore, it is necessary to study their correlation and estimate the time-series pattern of CWD moisture.

The Effect of the Surfactant on the Migration and Distribution of Immiscible Fluids in Pore Network (계면활성제가 공극 구조 내 비혼성 유체의 거동과 분포에 미치는 영향)

  • Park, Gyuryeong;Kim, Seon-Ok;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.105-115
    • /
    • 2021
  • The geological CO2 sequestration in underground geological formation such as deep saline aquifers and depleted hydrocarbon reservoirs is one of the most promising options for reducing the atmospheric CO2 emissions. The process in geological CO2 sequestration involves injection of supercritical CO2 (scCO2) into porous media saturated with pore water and initiates CO2 flooding with immiscible displacement. The CO2 migration and distribution, and, consequently, the displacement efficiency is governed by the interaction of fluids. Especially, the viscous force and capillary force are controlled by geological formation conditions and injection conditions. This study aimed to estimate the effects of surfactant on interfacial tension between the immiscible fluids, scCO2 and porewater, under high pressure and high temperature conditions by using a pair of proxy fluids under standard conditions through pendant drop method. It also aimed to observe migration and distribution patterns of the immiscible fluids and estimate the effects of surfactant concentrations on the displacement efficiency of scCO2. Micromodel experiments were conducted by applying n-hexane and deionized water as proxy fluids for scCO2 and porewater. In order to quantitatively analyze the immiscible displacement phenomena by n-hexane injection in pore network, the images of migration and distribution pattern of the two fluids are acquired through a imaging system. The experimental results revealed that the addition of surfactants sharply reduces the interfacial tension between hexane and deionized water at low concentrations and approaches a constant value as the concentration increases. Also it was found that, by directly affecting the flow path of the flooding fluid at the pore scale in the porous medium, the surfactant showed the identical effect on the displacement efficiency of n-hexane at equilibrium state. The experimental observation results could provide important fundamental information on immiscible displacement of fluids in porous media and suggest the potential to improve the displacement efficiency of scCO2 by using surfactants.

Water quality characteristics and spatial distribution of phytoplankton during dry and rainy seasons in Bunam Lake and Cheonsu Bay, Korea (부남호·천수만의 갈수기와 강우기 수질 오염 특성과 식물플랑크톤의 공간 분포 특성)

  • Lee, Minji;Seo, Jin Young;Baek, Seung Ho
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.2
    • /
    • pp.184-194
    • /
    • 2021
  • Since the construction of a dike in 1983, the water quality in the Bunam Lake has continued to deteriorate due to algal bloom caused by agricultural nutrient loading. Therefore, we evaluated the change in water quality and phytoplankton ecological characteristics in Bunam Lake and Cheonsu Bay, Korea. Water temperature, salinity, dissolved oxygen, chemical oxygen demand (COD), chlorophyll, and phytoplankton community were surveyed in April during the dry season and in July during the rainy reason. As a result, during the dry period, phytoplankton proliferated greatly and stagnated in the Bunam Lake while a very high population of cyanobacteria Oscillatoria spp. (8.61×107 cells L-1) was recorded. Most of the nutrients, except, nitrate and nitrite, were consumed due to the large growth of phytoplankton. However, during the rainy period, concentrations of ammonia, phosphate, silicate, nitrate, and nitrite, were very high towards the upper station due to the inflow of fresh water. Cyanobacteria Oscillatoria and Microcystis spp. were dominant in the Bunam Lake during the rainy period. Even in the Cheonsu Bay, cyanobacteria dominated due to the effect of discharge and diatoms, such as, Chaetoceros spp. and Eucampia zodiacus, which also proliferated significantly due to increased levels of nutrients. Since the eutrophication index was above 1 in Bunam Lake, it was classified as eutrophic water and the Cheonsu Bay was classified as eutrophic water only during the rainy season. In addition, a stagnant seawater-derived hypoxia water mass was observed at a depth of8m in the Bunam Lake adjacent to the tide embankment and the COD concentration reached 206 mg L-1 in the bottom layer at B3. Based on this result, it is considered that the water quality will continue to deteriorate if organic matters settle due to continuous inflow of nutrients and growth of organisms while the bottom water mass is stagnant.

Biological characteristics of Phanuromyia ricaniae(Hemiptera: Platygastroidea), an egg parasitoid of Ricania sublimata (Hemiptera: Ricaniidae) (갈색날개매미충 알 기생봉인 날개매미충알벌(Phanuromyia ricaniae)의 생물 특성)

  • Jeon, Sung-Wook;Kim, Kwang-Ho;Lee, Gwan-Seok;Seo, Bo Yoon;Kim, Ji Eun;Kang, Wee Soo;Cho, Jum Rae
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.586-593
    • /
    • 2020
  • This study was conducted to investigate the biological characteristics of Phanuromyia ricaniae (Hemiptera: Platygastroidea), an egg parasitoid of Ricania sp. (Hemiptera: Ricaniidae) as a biological control agent to control Ricania sublimata. The developmental period of P. ricaniae was 3.8 days for eggs, 11.1 days for larvae, and 16.3 days for pupae at 25℃, and 3.4 days for eggs, 7.8 days for larvae, and 15.3 days for pupae at 30℃. Except for the larval stage, the developmental periods were not significantly different, but the egg-to-pupa period at 30℃ was significantly shorter than that at 25℃. P. ricaniae emerged at the photophase in 24 hours, but not at the scotophase. A higher emergence rate (34.5%) was seen from 10:00 to 12:00 after the lights were turned. The female-to-male ratio of P. ricaniae was 3:1. The longevity of P. ricaniae adults was 49.0 days for females and 44.0 days for males at 20℃, 27.6 days for females and 28.4 days for males at 25℃, and 18 days for females and 14.0 days for males at 30℃. Its longevity at a low temperature (20℃) was longer than that at higher temperatures (25 and 30℃). Adult females laid eggs during all days except from 00:00-02:00 (scotophase time). The ovipositional distribution rate was 26.1% from 20:00 to 22:00, which was the peak, and the next peak was 15.7% at 10:00 to 12:00. P. ricaniae showed arrhenotokous parthenogenesis in which unfertilized eggs develop into males. Therefore, the results suggest that P. ricaniae may be a biological control agent for R. sublimata.

Topic Modeling Insomnia Social Media Corpus using BERTopic and Building Automatic Deep Learning Classification Model (BERTopic을 활용한 불면증 소셜 데이터 토픽 모델링 및 불면증 경향 문헌 딥러닝 자동분류 모델 구축)

  • Ko, Young Soo;Lee, Soobin;Cha, Minjung;Kim, Seongdeok;Lee, Juhee;Han, Ji Yeong;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.2
    • /
    • pp.111-129
    • /
    • 2022
  • Insomnia is a chronic disease in modern society, with the number of new patients increasing by more than 20% in the last 5 years. Insomnia is a serious disease that requires diagnosis and treatment because the individual and social problems that occur when there is a lack of sleep are serious and the triggers of insomnia are complex. This study collected 5,699 data from 'insomnia', a community on 'Reddit', a social media that freely expresses opinions. Based on the International Classification of Sleep Disorders ICSD-3 standard and the guidelines with the help of experts, the insomnia corpus was constructed by tagging them as insomnia tendency documents and non-insomnia tendency documents. Five deep learning language models (BERT, RoBERTa, ALBERT, ELECTRA, XLNet) were trained using the constructed insomnia corpus as training data. As a result of performance evaluation, RoBERTa showed the highest performance with an accuracy of 81.33%. In order to in-depth analysis of insomnia social data, topic modeling was performed using the newly emerged BERTopic method by supplementing the weaknesses of LDA, which is widely used in the past. As a result of the analysis, 8 subject groups ('Negative emotions', 'Advice and help and gratitude', 'Insomnia-related diseases', 'Sleeping pills', 'Exercise and eating habits', 'Physical characteristics', 'Activity characteristics', 'Environmental characteristics') could be confirmed. Users expressed negative emotions and sought help and advice from the Reddit insomnia community. In addition, they mentioned diseases related to insomnia, shared discourse on the use of sleeping pills, and expressed interest in exercise and eating habits. As insomnia-related characteristics, we found physical characteristics such as breathing, pregnancy, and heart, active characteristics such as zombies, hypnic jerk, and groggy, and environmental characteristics such as sunlight, blankets, temperature, and naps.

Evaluating the Predictability of Heat and Cold Damages of Soybean in South Korea using PNU CGCM -WRF Chain (PNU CGCM-WRF Chain을 이용한 우리나라 콩의 고온해 및 저온해에 대한 예측성 검증)

  • Myeong-Ju, Choi;Joong-Bae, Ahn;Young-Hyun, Kim;Min-Kyung, Jung;Kyo-Moon, Shim;Jina, Hur;Sera, Jo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.218-233
    • /
    • 2022
  • The long-term (1986~2020) predictability of the number of days of heat and cold damages for each growth stage of soybean is evaluated using the daily maximum and minimum temperature (Tmax and Tmin) data produced by Pusan National University Coupled General Circulation Model (PNU CGCM)-Weather Research and Forecasting (WRF). The Predictability evaluation methods for the number of days of damages are Normalized Standard Deviations (NSD), Root Mean Square Error (RMSE), Hit Rate (HR), and Heidke Skill Score (HSS). First, we verified the simulation performance of the Tmax and Tmin, which are the variables that define the heat and cold damages of soybean. As a result, although there are some differences depending on the month starting with initial conditions from January (01RUN) to May (05RUN), the result after a systematic bias correction by the Variance Scaling method is similar to the observation compared to the bias-uncorrected one. The simulation performance for correction Tmax and Tmin from March to October is overall high in the results (ENS) averaged by applying the Simple Composite Method (SCM) from 01RUN to 05RUN. In addition, the model well simulates the regional patterns and characteristics of the number of days of heat and cold damages by according to the growth stages of soybean, compared with observations. In ENS, HR and HSS for heat damage (cold damage) of soybean have ranged from 0.45~0.75, 0.02~0.10 (0.49~0.76, -0.04~0.11) during each growth stage. In conclusion, 01RUN~05RUN and ENS of PNU CGCM-WRF Chain have the reasonable performance to predict heat and cold damages for each growth stage of soybean in South Korea.

Evaluation and Physicochemical Property for Building Materials from the Japanese Ministry of General Affairs in Joseon Dynasty (일제강점기 조선통감부 건축재료의 물리화학적 특성과 평가)

  • Park, Seok Tae;Lee, Jeongeun;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.317-338
    • /
    • 2022
  • Physicochemical characteristics and evaluation were studied by subdividing the concretes, bricks and earth pipes on the site of the Japanese Ministry of General Affairs in Joseon Dynasty, known as modern architecture, into three periods. Concretes showed similar specific gravity and absorption ratio, and large amounts of aggregates, quartz, feldspar, calcite and portlandite were detected. Porosity of the 1907 bricks were higher than those of 1910 and 1950 bricks. All earthen pipe is similar, but the earlier one was found to be more dense. Bricks and earthen pipes are dark red to brown in color within many cracks and pores, but the matrix of the earthen pipe is relatively homogeneous. Quartz, feldspar and hematite are detected in bricks, and mullite is confirmed with quartz and feldspar in earthen pipes, so it is interpreted that the materials have a firing temperature about 1,000 to 1,100℃. Concretes showed similar CaO content, but brick and earthen pipe had low SiO2 and high Al2O3 in the 1907 specimen. However, the materials have high genetic homogeneity based on similar geochemical behaviors. Ultrasonic velocity and rebound hardness of the concrete foundation differed due to the residual state, but indicated relatively weak physical properties. Converting the unconfined compressive strength, the 1st extended area had the highest mean values of 45.30 and 46.33 kgf/cm2, and the 2nd extended area showed the lowest mean values (20.05 and 24.76 kgf/cm2). In particular, the low CaO content and absorption ratio, the higher ultrasonic velocity and rebound hardness. It seems that the concrete used in the constructions of the Japanese Ministry of General Affairs in Joseon Dynasty had similar mixing characteristics and relatively constant specifications for each year. It is interpreted that the bricks and earthen pipes were through a similar manufacturing process using almost the same raw materials.

Phytoplankton Variability in Response to Glacier Retreat in Marian Cove, King George Island, Antarctica in 2021-2022 Summer (하계 마리안 소만 빙하후퇴에 따른 식물플랑크톤 변동성 분석)

  • Chorom Shim;Jun-Oh Min;Boyeon Lee;Seo-Yeon Hong;Sun-Yong Ha
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.417-426
    • /
    • 2023
  • Rapid climate change has resulted in glacial retreat and increased meltwater inputs in the Antarctic Peninsula, including King George Island where Marian Cove is located. Consequently, these phenomena are expected to induce changes in the water column light properties, which in turn will affect phytoplankton communities. To comprehend the effects of glacial retreat on the marine ecosystem in Marian Cove, we investigated on phytoplankton biomass (chlorophyll-a, chl-a) and various environment parameters in this area in December 2021 and January 2022. The average temperature at the euphotic depth in January 2022 (1.41 ± 0.13 ℃) was higher than that in December 2021 (0.87 ± 0.17 ℃). Contrastingly, the average salinity was lower in January 2022 (33.9 ± 0.10 psu) than in December 2021 (34.1 ± 0.12 psu). Major nutrients, including dissolved inorganic nitrogen, phosphate, and silicate, were sufficiently high, and thus, did not act as limiting factors for phytoplankton biomass. In December 2021 and January 2022, the mean chl-a concentrations were 1.03 ± 0.64 and 0.66 ± 0.15㎍ L-1, respectively. The mean concentration of suspended particulate matter (SPM) was 24.9 ± 3.54 mgL-1 during the study period, with elevated values observed in the vicinity of the inner glacier. However, relative lower chl-a concentrations were observed near the inner glacier, possibly due to high SPM load from the glacier, resulting in reduced light attenuation by SPM shading. Furthermore, the proportion of nanophytoplankton exceeded 70% in the inner cove, contributing to elevated mean fractions of nanophytoplankton in the glacier retreat marine ecosystem. Overall, our study indicated that freshwater and SPM inputs from glacial meltwater may possibly act as main factors controlling the dynamics of phytoplankton communities in glacier retreat areas. The findings may also serve as fundamental data for better understanding the carbon cycle in Marian Cove.