• Title/Summary/Keyword: environmental stress response

Search Result 539, Processing Time 0.025 seconds

Reassessment of viscoelastic response in steel-concrete composite beams

  • Miranda, Marcela P.;Tamayo, Jorge L.P.;Morsch, Inacio B.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.617-631
    • /
    • 2022
  • In this paper the viscoelastic responses of four experimental steel-concrete composite beams subjected to highly variable environmental conditions are investigated by means of a finite element (FE) model. Concrete specimens submitted to stepped stress changes are also evaluated to validate the current formulations. Here, two well-known approaches commonly used to solve the viscoelastic constitutive relationship for concrete are employed. The first approach directly solves the integral-type form of the constitutive equation at the macroscopic level, in which aging is included by updating material properties. The second approach is postulated from a rate-type law based on an age-independent Generalized Kelvin rheological model together with Solidification Theory, using a micromechanical based approach. Thus, conceptually both approaches include concrete hardening in two different manners. The aim of this work is to compare and analyze the numerical prediction in terms of long-term deflections of the studied specimens according to both approaches. To accomplish this goal, the performance of several well-known model codes for concrete creep and shrinkage such as ACI 209, CEB-MC90, CEB-MC99, B3, GL 2000 and FIB-2010 are evaluated by means of statistical bias indicators. It is shown that both approaches with minor differences acceptably match the long-term experimental deflection and are able to capture complex oscillatory responses due to variable temperature and relative humidity. Nevertheless, the use of an age-independent scheme as proposed by Solidification Theory may be computationally more advantageous.

J2-bounding Surface Plasticity Model with Zero Elastic Region (탄성영역이 없는 J2-경계면 소성모델)

  • Shin, Hosung;Oh, Seboong;Kim, Jae-min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.469-476
    • /
    • 2023
  • Soil plasticity models for cyclic and dynamic loads are essential in non-linear numerical analysis of geotechnical structures. While a single yield surface model shows a linear behavior for cyclic loads, J2-bounding surface plasticity model with zero elastic region can effectively simulate a nonlinearity of the ground response with the same material properties. The radius of the yield surface inside the boundary surface converged to 0 to make the elastic region disappear, and plastic hardening modulus and dilatancy define plastic strain increment. This paper presents the stress-strain incremental equation of the developed model, and derives plastic hardening modulus for the hyperbolic model. The comparative analyses of the triaxial compression test and the shallow foundation under the cyclic load can show stable numerical convergence, consistency with the theoretical solution, and hysteresis behavior. In addition, plastic hardening modulus for the modified hyperbolic function is presented, and a methodology to estimate model variables conforming 1D equivalent linear model is proposed for numerical modeling of the multi-dimensional behavior of the ground.

Development of a Design Chart for the Initial Design Stage of Very Large Floating Structures (초대형 부유식 해상구조물의 초기 설계를 위한 설계차트 개발)

  • Zi, Goangseup;Kim, Jin Gyun;Lee, Seung Oh;Lee, Phill-Seung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.315-324
    • /
    • 2010
  • We developed a design chart for very large floating structures through intensive hydroelastic analysis. Using this chart, one can predict the hydroelastic response of very large floating structures preliminarily at design stage without the cost-demanding hydroelastic analysis. This paper presents two new design charts based on the theory of VLFS. The purpose of the first design chart is to determine RAOs of the maximum longitudinal stress of VLFS considering properties of waves and structures. The design chart I can be applied to any sizes of VLFS in same aspect ratios and dimensionless stiffness parameters. The second design chart is developed to take into account the actual wave condition by using the Bretschneider spectrum with Beaufort sea state.

Nonlinear Dynamic Behavior of Temporary Rail Considering the Effect of Vibration (진동영향을 고려한 가시설 레일의 동적 거동 특성)

  • Lim, Hyung Joon;Ryu, Dong Hyeon;Won, Jong Hwa;Kim, Moon Kyum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.171-178
    • /
    • 2008
  • The object of this study is to propose a rate of vibration increase in the analysis of temporary rail non-fixed in the vertical direction and characterize the nonlinear dynamic behavior of temporary rail while considering longitudinal and latitudinal load, vibration and lifting. The rate of vibration increase is proposed through measurement of an actual structure that is largely affected by loading and vibration of the superstructure. Dynamic behavior was additionally characterized by the dynamic response resulting from nonlinear dynamic finite element analysis with vehicle loading, including the rate of vibration increase. As a result, the rate of vibration increase by the vibration of an Auto Bar Machine is determined as 7% and the maximum stress in the analysis of the nonlinear rail is increased 14.5% over that of linear rail, and temporary rail is shown to be very sensitive to the velocity of the superstructure.

Optimisation of Infrastructure within the Melbourne Urban plan

  • Koorosh Gharehbaghi;Vincent Raso
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.299-303
    • /
    • 2011
  • Congestion is a growing concern of many global cities and the demands on Infrastructure services within a locale coupled by the rising expectations from the growing population places stress on these cities. This entails the ability to build a sustainable community that requires an understanding and recognition of Population growth, changing demographics and the ever changing urban development on both a macro and micro level. Infrastructure is an integral part of Australian economy, particularly the 'Infrastructure Assets Management' which highlights the importance towards the development of sustainable communities for Melbourne's future. Melbourne 2030 is a comprehensive representation of government's response to a wide-ranging population growth within Melbourne metropolitan and surrounding areas. Urban plan and specific Infrastructure Assets Planning needs not only to provide sufficient Infrastructure to a community, but it must also be efficient and innovative so that it produces an optimised management system. A system that incorporates engineering techniques that will be sustainable for decades to come by maintaining an acceptable level of services to its intended community in an effective manner, which also strengthens service delivery. The fundamental challenges for optimization of Infrastructure with the Melbourne urban plan is, the ability to manage and sustain maintenance of Infrastructure to provide the acceptable level of service required by the community in a most effective manner which also strengthens service delivery to contribute towards Melbourne 2030. This paper particularly investigates some of the fundamental issues within the Melbourne urban plan such as Infrastructure Asset Management, AusLink and the Australian Road Management Act 2004, which the Governments at all levels must deal with to provide an economically viable solution to the changing Infrastructure so it may suits the needs and services the strategies of a metropolis.

  • PDF

Factors related to adolescent obesity and changes: a cross-sectional study based on the Korea Youth Risk Behavior Survey (청소년의 비만과 관련된 요인 분석 및 관련 요인의 변화에 대한 단면조사연구 -청소년건강행태조사를 이용하여-)

  • Bora Lee;Ho Kyung Ryu
    • Korean Journal of Community Nutrition
    • /
    • v.28 no.5
    • /
    • pp.363-375
    • /
    • 2023
  • Objectives: The objective of this study was to identify factors associated with adolescent obesity, as well as any new factors that correlated with a change in the rate of obesity over time. Methods: The study used 5-yearly data collected by the Korea Youth Risk Behavior Survey starting from the year 2006 up until 2021 (data from 2nd, 7th, 11th, and 17th surveys were analyzed). Factors such as demographics, dietary factors, health behavioral factors, and mental health factors were studied. All data were analyzed using IBM SPSS 27.0, employing chi-square tests and multiple logistic regression analysis. Results: This study included data from a total of 255,200 participants. Factors contributing to obesity varied with time. Over the survey duration of 15 years, low academic achievement, parents with low levels of education, low frequency of fruit consumption, low frequency of fast food intake, long periods of being seated, and high levels of stress were significantly associated with a high rate of obesity. Factors that showed a new correlation with an increase in obesity rates included living with single parents, low frequency of muscle strengthening exercises, and experiencing intense sadness and despair in the past year. Factors that were correlated with a change in obesity rates over time included household economic status, frequency of carbonated beverage consumption, frequency of intense physical activity, and frequency of alcohol consumption. Breakfast intake and smoking were not significantly associated with obesity rates in the 15-year period. Conclusions: While several factors associated with obesity remained consistent over time, several new factors have emerged in response to social, economic, and environmental changes contributed to a change in obesity rate over time. Therefore, to prevent and manage adolescent obesity, continuous research into the new emergent factors contributing to obesity is needed.

On the free vibration behavior of carbon nanotube reinforced nanocomposite shells: A novel integral higher order shear theory approach

  • Mohammed Houssem Eddine Guerine;Zakaria Belabed;Abdelouahed Tounsi;Sherain M.Y. Mohamed;Saad Althobaiti;Mahmoud M. Selim
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.1-23
    • /
    • 2024
  • This paper formulates a new integral shear deformation shell theory to investigate the free vibration response of carbon nanotube (CNT) reinforced structures with only four independent variables, unlike existing shell theories, which invariably and implicitly induce a host of unknowns. This approach guarantees traction-free boundary conditions without shear correction factors, using a non-polynomial hyperbolic warping function for transverse shear deformation and stress. By introducing undetermined integral terms, it will be possible to derive the motion equations with a low order of differentiation, which can facilitate a closed-form solution in conjunction with Navier's procedure. The mechanical properties of the CNT reinforcements are modeled to vary smoothly and gradually through the thickness coordinate, exhibiting different distribution patterns. A comparison study is performed to prove the efficacy of the formulated shell theory via obtained results from existing literature. Further numerical investigations are current and comprehensive in detailing the effects of CNT distribution patterns, volume fractions, and geometrical configurations on the fundamental frequencies of CNT-reinforced nanocomposite shells present here. The current shell theory is assumed to serve as a potent conceptual framework for designing reinforced structures and assessing their mechanical behavior.

Bioaccumulation and Expressions of Stress Response Genes in Benthic Oligochaete Worm Tubifex tubifex to Exposure of Cadmium-spiked Sediment (카드뮴 (Cd) 노출 퇴적물에 따른 실지렁이 Tubifex tubifex의 체내 축적과 스트레스 반응 유전자 발현)

  • Ji-Hoon Kim;Won-Seok Kim;Kiyun Park;Ihn-Sil Kwak
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.320-329
    • /
    • 2023
  • Cadmium (Cd), a heavy metal found in the aquatic environment, accumulates in organisms through the food chain. In the study, we investigated the survival rates, measurement of body Cd levels, and expression analysis of the stress response genes (Heat shock protein 70: HSP70 and Heat shock protein 60: HSP60) and antioxidant enzyme Glutathione S-Transferases (GST) on benthic oligochaete worm Tubifex tubifex exposed three concentrations of Cd, to analyze the bioaccumulation and changes of stress gene expressions to exposure toxicity of the Cd-spiked sediment. Survival rates of T. tubifex exposed to the Cdspiked sediment were 93% at 0.4 mg kg-1 Cd, 96% at 1.87 mg kg-1 Cd, and 93% at 6.09 mg kg-1 Cd for 10 days. Cd concentration in the body of T. tubifex was higher than that in the sediment. After Cd exposures for 10 days, the body Cd levels were 18.4 mg kg-1, 13.06 mg kg-1, and 79.11 mg kg-1 at exposed three concentrations of Cd, respectively. Upregulation of HSP70 gene expression was observed at all concentrations of exposed Cd as a time-dependent manner, whereas transcriptional expression of the HSP60 gene increased as a timedependent manner in T. tubifex exposed to the relative high concentration (6.09 mg kg-1) of Cd. However, GST gene expression increased on day 1 at all concentrations after Cd exposures, and then downregulated until 10 days. These results indicate to ecotoxicological and molecular effects in benthic oligochaete worm T. tubifex to Cd-spiked sediment and provide the basic information for the utilization of environmental toxicity assessment using the T. tubifex as a aquatic pollution indicator species.

An Analytical Study on the Seismic Behavior and Safety of Vertical Hydrogen Storage Vessels Under the Earthquakes (지진 시 수직형 수소 저장용기의 거동 특성 분석 및 안전성에 관한 해석적 연구)

  • Sang-Moon Lee;Young-Jun Bae;Woo-Young Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.152-161
    • /
    • 2023
  • In general, large-capacity hydrogen storage vessels, typically in the form of vertical cylindrical vessels, are constructed using steel materials. These vessels are anchored to foundation slabs that are specially designed to suit the environmental conditions. This anchoring method involves pre-installed anchors on top of the concrete foundation slab. However, it's important to note that such a design can result in concentrated stresses at the anchoring points when external forces, such as seismic events, are at play. This may lead to potential structural damage due to anchor and concrete damage. For this reason, in this study, it selected an vertical hydrogen storage vessel based on site observations and created a 3D finite element model. Artificial seismic motions made following the procedures specified in ICC-ES AC 156, as well as domestic recorded earthquakes with a magnitude greater than 5.0, were applied to analyze the structural behavior and performance of the target structures. Conducting experiments on a structure built to actual scale would be ideal, but due to practical constraints, it proved challenging to execute. Therefore, it opted for an analytical approach to assess the safety of the target structure. Regarding the structural response characteristics, the acceleration induced by seismic motion was observed to amplify by approximately ten times compared to the input seismic motions. Additionally, there was a tendency for a decrease in amplification as the response acceleration was transmitted to the point where the centre of gravity is located. For the vulnerable components, specifically the sub-system (support columns and anchorages), the stress levels were found to satisfy the allowable stress criteria. However, the concrete's tensile strength exhibited only about a 5% margin of safety compared to the allowable stress. This indicates the need for mitigation strategies in addressing these concerns. Based on the research findings presented in this paper, it is anticipated that predictable load information for the design of storage vessels required for future shaking table tests will be provided.

Improvement of Milk Fatty Acid Composition for Production of Functional Milk by Dietary Phytoncide Oil Extracted from Discarded Pine Nut Cones (Pinus koraiensis) in Holstein Dairy Cows

  • Kim, Min Jeong;Jung, U Suk;Jeon, Seung Woo;Lee, Jae Sung;Kim, Won Seob;Lee, Sang Bum;Kim, Youn Chil;Kim, Bae Young;Wang, Tao;Lee, Hong Gu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.12
    • /
    • pp.1734-1741
    • /
    • 2016
  • This study was conducted to examine the effects of adding phytoncide oil extracted from Korean pine nut cone by-product to the diet of dairy cows on milk yield and compositions, fatty acid characteristics, complete blood count and stress response. A total of 74 Holstein cows were used for 30 days and divided into two groups. Each group was given a basal diet (C) or an experimental diet containing phytoncide additives at 0.016% (T) in feed. The results showed that phytoncide feeding had no effect on milk yield. In addition, there were no observed effects on milk composition, but the ratio of fatty acid in milk was significantly affected by the phytoncide diet, and it showed a positive effect. Not only were the major functional fatty acids, conjugated linoleic acid and eicosapentaenoic acid increased, but also ${\omega}6:{\omega}3$ fatty acid ratio was reduced in milk of T group (p<0.05). In blood analysis, the complete blood count showed no significant difference between C and T group on all parameters. However, the cortisol concentration was significantly decreased in T group compared to control (p<0.05). Taken together, we suggest that phytoncide oil does not have a great influence on the physiological changes, but can be a potential feed additive that improves the milk fatty acid and stress resilience in dairy cows. In addition, it will contribute to the development of feed resource, a reduction in feed cost and a lessening of environmental pollution.