• 제목/요약/키워드: environmental prediction

검색결과 2,913건 처리시간 0.037초

콘크리트교를 지나는 철도 차량의 환경 소음 예측 연구 (Prediction of the Environmental Noise Level of Railway Cars Crossing a Concrete Bridge)

  • 장승호
    • 한국음향학회지
    • /
    • 제34권1호
    • /
    • pp.52-59
    • /
    • 2015
  • 국내 철도의 환경 소음 예측을 위해서 기존에는 총합 소음도의 거리별 경험식에 기초한 모델을 이용하였던 바, 교량 주변 소음도를 계산하는 데에도 거리만의 함수를 이용하였다. 그러나 콘크리트교에서는 수음점의 거리뿐만 아니라 위치에 따라서도 소음도가 변화한다. 본 논문에서는 철도 콘크리트교에서 교량 상판에 의한 회절 및 지면 효과를 고려한 소음전파 예측모델을 도출하였으며, 이때 ISO 9613-2의 소음 전파 모델을 이용하였다. 고속철도 콘크리트 교 주변 소음도에 대한 예측값을 실제 측정결과와 비교하였으며, 그 결과 본 예측 모델이 비교적 작은 오차를 냄을 확인하였다.

GloSea5 모형의 한반도 인근 해수면 온도 예측성 평가: 편차 보정에 따른 개선 (Evaluation of Sea Surface Temperature Prediction Skill around the Korean Peninsula in GloSea5 Hindcast: Improvement with Bias Correction)

  • 강동우;조형오;손석우;이조한;현유경;부경온
    • 대기
    • /
    • 제31권2호
    • /
    • pp.215-227
    • /
    • 2021
  • The necessity of the prediction on the Seasonal-to-Subseasonal (S2S) timescale continues to rise. It led a series of studies on the S2S prediction models, including the Global Seasonal Forecasting System Version 5 (GloSea5) of the Korea Meteorological Administration. By extending previous studies, the present study documents sea surface temperature (SST) prediction skill around the Korean peninsula in the GloSea5 hindcast over the period of 1991~2010. The overall SST prediction skill is about a week except for the regions where SST is not well captured at the initialized date. This limited prediction skill is partly due to the model mean biases which vary substantially from season to season. When such biases are systematically removed on daily and seasonal time scales the SST prediction skill is improved to 15 days. This improvement is mostly due to the reduced error associated with internal SST variability during model integrations. This result suggests that SST around the Korean peninsula can be reliably predicted with appropriate post-processing.

Prediction of Chloride Profile considering Binding of Chlorides in Cement Matrix

  • Song, Ha-Won;Lee, Chang-Hong;Ann, Ki Yong
    • Corrosion Science and Technology
    • /
    • 제8권2호
    • /
    • pp.81-88
    • /
    • 2009
  • Chloride induced corrosion of steel reinforcement inside concrete is a major concern for concrete structures exposed to a marine environment. It is well known that transport of chloride ions in concrete occurs mainly through ionic/molecular diffusion, as a gradient of chloride concentration in the concrete pore solution is set. In the process of chloride transport, a portion of chlorides are bound in cement matrix then to be removed in the pore solution, and thus only the rest of chlorides which are not bound (i.e. free chlorides) leads the ingress of chlorides. However, since the measurement of free/bound chloride content is much susceptible to environmental conditions, chloride profiles expressed in total chlorides are evaluated to use in many studies In this study, the capacity of chloride binding in cement matrix was monitored for 150 days and then quantified using the Langmuir isotherm to determine the portions of free chlorides and bound chlorides at given total chlorides and the redistribution of free chlorides. Then, the diffusion of chloride ion in concrete was modeled by considering the binding capacity for the prediction of chloride profiles with the redistribution. The predicted chloride profiles were compared to those obtained from conventional model. It was found that the prediction of chloride profiles obtained by the model has shown slower diffusion than those by the conventional ones. This reflects that the prediction by total chloride may overestimate the ingress of chlorides by neglecting the redistribution of free chlorides caused by the binding capacity of cement matrix. From the evaluation, it is also shown that the service life prediction using the free chloride redistribution model needs different expression for the chloride threshold level which is expressed by the total chlorides in the conventional diffusion model.

도로교통소음에 관한 기존 예측식 평가 및 검증에 관한 연구 (A Study on the Evaluation and Verification of an existing Prediction Model on the Road Traffic Noise)

  • 이내현;조일형;박영민;선우영
    • 환경영향평가
    • /
    • 제15권2호
    • /
    • pp.93-100
    • /
    • 2006
  • In general, the verification to prediction formula in a national road and the main street of a town has been used recklessly in Korea. Therefore we investigated the validity of an existing prediction formula (NIER(87, 99), TR-Noise, KLC(2002)) with correction relationship which was based on both the prediction formular from apartment complex in the field and height 1.5m from the surface level. On the results of measuring the noise level form an isolated distance, the noise level showed that it was 4.5~5.5dB(A) by reason of becoming 2 folder far from a source. From the distribution of noise level measured by the apartment floors, the measurement point (1st floor) was 58.7~71.4dB(A) at its lowest level and the middle floors (3, 5, 7 and 10) were the highest distribution of noise level. From the analysis results on the application validity to an existing prediction formular (NIER(87, 99), TR-Noise, KLC(2002)) in the height 1.5m, the correction coefficients were 0.95~0.96 and the measured values were reasonably close to the predicted values, indicating the validity and adequacy of the predicted models. KLC(2002) model was found accurate within 3dB(A) with 36 data out of the total 42 data, showing the most accuracy among the predict models. However, the developed models have to improve the accuracy with a various of factors.

딥러닝과 앙상블 머신러닝 모형의 하천 탁도 예측 특성 비교 연구 (Comparative characteristic of ensemble machine learning and deep learning models for turbidity prediction in a river)

  • 박정수
    • 상하수도학회지
    • /
    • 제35권1호
    • /
    • pp.83-91
    • /
    • 2021
  • The increased turbidity in rivers during flood events has various effects on water environmental management, including drinking water supply systems. Thus, prediction of turbid water is essential for water environmental management. Recently, various advanced machine learning algorithms have been increasingly used in water environmental management. Ensemble machine learning algorithms such as random forest (RF) and gradient boosting decision tree (GBDT) are some of the most popular machine learning algorithms used for water environmental management, along with deep learning algorithms such as recurrent neural networks. In this study GBDT, an ensemble machine learning algorithm, and gated recurrent unit (GRU), a recurrent neural networks algorithm, are used for model development to predict turbidity in a river. The observation frequencies of input data used for the model were 2, 4, 8, 24, 48, 120 and 168 h. The root-mean-square error-observations standard deviation ratio (RSR) of GRU and GBDT ranges between 0.182~0.766 and 0.400~0.683, respectively. Both models show similar prediction accuracy with RSR of 0.682 for GRU and 0.683 for GBDT. The GRU shows better prediction accuracy when the observation frequency is relatively short (i.e., 2, 4, and 8 h) where GBDT shows better prediction accuracy when the observation frequency is relatively long (i.e. 48, 120, 160 h). The results suggest that the characteristics of input data should be considered to develop an appropriate model to predict turbidity.

퍼지 논리와 지리공간정보를 이용한 공주지역 토지피복 변화 예측 (Prediction of Land-cover Change in the Gongju Areas using Fuzzy Logic and Geo-spatial Information)

  • 장동호
    • 환경영향평가
    • /
    • 제14권6호
    • /
    • pp.387-402
    • /
    • 2005
  • In this study, we tried to predict the change of future land-cover and relationships between land-cover change and geo-spatial information in the Gongju area by using fuzzy logic operation. Quantitative evaluation of prediction models was carried out using a prediction rate curve using. Based on the analysis of correlations between the geo-spatial information and land-cover change, the class with the highest correlation was extracted. Fuzzy operations were used to predict land-cover change and determine the land-cover prediction maps that were the most suitable. It was predicted that in urban areas, the urban expansion of old and new towns would occur centering on the Gem-river, and that urbanization of areas along the interchange and national roads would also expand. Among agricultural areas, areas adjacent to national roads connected to small tributaries of the Gem-river and neighboring areas would likely experience changes. Most of the forest areas are located in southeast and from this result we can guess why the wide chestnut-tree cultivation complex is located in these areas and the possibility of forest damage is very high. As a result of validation using the prediction rate curve, it was indicated that among fuzzy operators, the maximum fuzzy operator was the most suitable for analyzing land-cover change in urban and agricultural areas. Other fuzzy operators resulted in the similar prediction capabilities. However, in the prediction rate curve of integrated models for land-cover prediction in the forest areas, most fuzzy operators resulted in poorer prediction capabilities. Thus, it is necessary to apply new thematic maps or prediction models in connection with the effective prediction of changes in the forest areas.

환경서비스업과 물류서비스업의 예측 및 인과성 검정 (Prediction and Causality Examination of the Environment Service Industry and Distribution Service Industry)

  • 선일석;이충효
    • 유통과학연구
    • /
    • 제12권6호
    • /
    • pp.49-57
    • /
    • 2014
  • Purpose - The world now recognizes environmental disruption as a serious issue when regarding growth-oriented strategies; therefore, environmental preservation issues become pertinent. Consequently, green distribution is continuously emphasized. However, studying the prediction and association of distribution and the environment is insufficient. Most existing studies about green distribution are about its necessity, detailed operation methods, and political suggestions; it is necessary to study the distribution service industry and environmental service industry together, for green distribution. Research design, data, and methodology - ARIMA (auto-regressive moving average model) was used to predict the environmental service and distribution service industries, and the Granger Causality Test based on VAR (vector auto regressive) was used to analyze the causal relationship. This study used 48 quarters of time-series data, from the 4th quarter in 2001 to the 3rd quarter in 2013, about each business type's production index, and used an unchangeable index. The production index about the business type is classified into the current index and the unchangeable index. The unchangeable index divides the current index into deflators to remove fluctuation. Therefore, it is easy to analyze the actual production index. This study used the unchangeable index. Results - The production index of the distribution service industry and the production index of the environmental service industry consider the autocorrelation coefficient and partial autocorrelation coefficient; therefore, ARIMA(0,0,2)(0,1,1)4 and ARIMA(3,1,0)(0,1,1)4 were established as final prediction models, resulting in the gradual improvement in every production index of both types of business. Regarding the distribution service industry's production index, it is predicted that the 4th quarter in 2014 is 114.35, and the 4th quarter in 2015 is 123.48. Moreover, regarding the environmental service industry's production index, it is predicted that the 4th quarter in 2014 is 110.95, and the 4th quarter in 2015 is 111.67. In a causal relationship analysis, the environmental service industry impacts the distribution service industry, but the distribution service industry does not impact the environmental service industry. Conclusions - This study predicted the distribution service industry and environmental service industry with the ARIMA model, and examined the causal relationship between them through the Granger causality test based on the VAR Model. Prediction reveals the seasonality and gradual increase in the two industries. Moreover, the environmental service industry impacts the distribution service industry, but the distribution service industry does not impact the environmental service industry. This study contributed academically by offering base line data needed in the establishment of a future style of management and policy directions for the two industries through the prediction of the distribution service industry and the environmental service industry, and tested a causal relationship between them, which is insufficient in existing studies. The limitations of this study are that deeper considerations of advanced studies are deficient, and the effect of causality between the two types of industries on the actual industry was not established.

기존기법과 ARIMA기법을 활용한 최종 침하량 예측에 관한 비교 연구 (A Comparative Study on the Prediction of the Final Settlement Using Preexistence Method and ARIMA Method)

  • 강세연
    • 한국지반환경공학회 논문집
    • /
    • 제20권10호
    • /
    • pp.29-38
    • /
    • 2019
  • 연약지반 안정 및 침하관리에 있어 침하예측기술은 지속적으로 발전되어 공사비 절감과 정확한 토지사용 시기를 확인하는데 활용하고 있으나, 기존 예측방법인 쌍곡선법, Asaoka법, Hoshino법 등은 많은 계측기간이 경과되어야 정확한 침하예측이 가능하여 압밀초기 신속한 예측이 어려운 실정이다. 기존 예측방법이 침하곡선으로부터 산정한 기울기의 비례성 가정을 통해 장래침하량을 추정하는 사유로 판단된다. 본 연구에서는 시계열 분석기술 중 ARIMA 기법을 도입하여 기존예측방법과 비교 분석하였다. ARIMA 기법은 지반조건 구분 없이 예측 가능하였으며, 기존방법과 유사한 결과를 조기에 예측(최종침하) 할 수 있었다.