• Title/Summary/Keyword: environmental geochemistry

Search Result 217, Processing Time 0.024 seconds

Characteristics of the Dalseong Acid Mine Drainage and the Role of Schwertmannite (달성폐광산 산성광산배수의 발달특징과 슈베르트마나이트의 역할)

  • Choo, Chang-Oh;Jeong, Gyo-Cheol;Lee, Jin-Kook
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.187-196
    • /
    • 2007
  • The Dalseong acid mine drainage were studied focused on the characters of schwertmannite that controls geochemistry of the stream. Besides chemical analysis of stream water, particle size analysis, XRD SEM and TEM were performed on precipitates of streams and on wasted metalliferous ores. The AMD discharged from the abandoned mine reveals a decrease of pH and EC downward stream. Euhedral sulfur occurs as equigranular aggregates on the altered pyrite while fine acicula goethite coalesces to form cross, star, or starfish-like shapes. Water chemistry plotted on the Eh-pH diagram shows that schwertmannite and ferrihydrite are stable phases. Reddish brown precipitates consist of mostly schwertmannite with less goethite, whereas yellowish brown precipitates are composed of geothite with less schwertmannite. The particle size of precipitates ranges $d(0.1)\;0.861{\mu}m{\sim}3.769{\mu}m,\;d(0.5)\;3.984{\mu}m{\sim}15.255{\mu}m,\;and\;d(0.9)\;9.875{\mu}m{\sim}56.726{\mu}m$. Schwertmannite is characterized by equigranular spheric form. Pincushion or spicule with 100nm width and $200{\sim}300nm$length form on schwertmannite sphere with radial growth patterns. It is highly probable that reddish or yellowish brown precipitates formed in many AMDs may contain schwerhnannite. Because it can serve as sink for removing heavy elements by adsorption in AMD system, there is a need to correctly identify schwertmannite in precipitates and to characterize its phase stability.

Enhanced Migration of Gasohol Fuels in Clay Soils and Sediments (Gasoline-ethanol(Gasohol)혼합액의 점토층 내 이동에 대한 연구)

  • Hee-Chul Choi;W.M. Stallard;Kwang-Soo Kim;In-Soo Kim
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.67-79
    • /
    • 1996
  • Clay soils typically have low hydraulic conductivities in the presence of high polarity pore fluid, such as water. Low polarity fluids, such as hydrocarbon fuels and halogenated organic solvents, typically cannot migrate into clay pores because they cannot displace the pore water. Oxygenated additives in gasoline, such as alcohols and methyl-tert-butyl ether, are increasingly used to control air pollution emissions. These relatively polar and highly water-soluble compounds may facilitate displacement of pore water and enhance migration of fuels and solvents through clay-rich soil strata. In the reported research, the migration of gasoline-alcohol fuel mixtures (gasohol) through consolidated clay was examined. Prepared kaolinite clay samples were consolidated from slurry, and various combinations of gasoline, alcohol, and water were applied to the clays under 152 Pa gauge pressure. Movement of the fluids into the clay samples was monitored by measur ing displaced pore fluid and by magnetic resonance imaging of the samples. The structures of selected samples were examined using environmental scanning electron microscopy. Results of the research suggest that alcohol added to hydrocarbon fuels can enhance migration through some clays significantly. Gasoline did not migrate appreciably into water saturated clay, even after 14 days under pressure. The gasohol mixture migrated readily into the clay in only 20 minutes. Increased hydraulic conductivity of the clay in the presence of gasohol is hypothesized to be due to the collapse of the clays pore structure when ethanol is present, creating larger pores. Increasing pore diameter decreases the capillary pressure needed for the gasohol to replace water and allows gasohol to migrate through the clay.

  • PDF

Geochemistry and Mineralogy of Mine Drainage Water Precipitate and Evaporite Minerals in the Hwasoon Area (화순 폐탄광지역 광산배수와 침전 및 증발잔류광물에 대한 지구화학적 및 광물학적 연구)

  • 박천영;정연중;강지성
    • Economic and Environmental Geology
    • /
    • v.33 no.5
    • /
    • pp.391-404
    • /
    • 2000
  • This study investigated the geochemical characteristics of mine drainage discharged from an abandoned coal mine in the Hwasoon area. Surface water samples were collected from 23 locations along the Hancheon creek. The concentration of Zn and Cu in stream waters was highest at low pH (3.53), whereas the content of TDS and TDI was highest at high pH (7.78) due to the concentration of Ca, $HCO_3$ and $SO_4$. At the upstream site, the Ba, Fe, Mn, Zn, and $SO_4$ contents were relatively high but decreased significantly with the distance from the coal mine. On the contrary, the Na and $NO_3$ contents were low at the upstream site but increased downstream. Yellow precipitate material collected in the Hancheon consisted mainly of iron and LOI. This yellow precipitate was heated from 100 to $900^{\circ}C$ for 1 hour. With increasing temperature, the intensity of hematite peaks were sharply produced in X-ray pattern and the absorption band Fe-O of hematite increased in IR due to dehydration and melting. The yellow to brown precipitate and evaporite materials were collected by a air-dry from the acid mine water at the laboratory. After drying, the concentration of ions in the acid water samples increased progressively in oversaturation with respect to either gypsum, ferrohexahydrite or quenstedetite. The X-ray powder diffraction studies identified that the precipitated and evaporated materials after drying were well crystallized gypsum, ferrohexahydrite and quenstedetite. Diagnostic peaks used for identification of gypsum were the 7.65, 4.28, 3.03, 2.87 and 2.48$\AA$ peaks and those for ferrohexahydrite were the 5.46, 5.12, 4.89, 4.44, 4.05, 3.62, 3.46, 3.40, 3.20, 3.03, 2.94, 2.53, 2.28, 2.07, 1.88 and 1.86${\AA} peaks. The IR spectra with OH-stretching, deformation of $H_2O$and ${SO_4}^{2-}$stretching vibration include the existence of gypsum, ferrohexahydrite and quenstedetite in the precipitated and evaporite materials. In the SEM and EDS analysis for the evaporite material, gypsum with well-crystallized, acicular, and columnar form was distinctly observed.

  • PDF

Geology of the Kualkulun in the Middle Kalimantan, Indonesia: II. Mineralogy and Geochemistry (인도네시아 중부 칼리만탄 쿠알라쿠룬 지역의 지질: II. 광물 및 지구화학)

  • Kim In-Joon;Lee Gyoo Ho;Cho Deung-Lyong;Lee Seung-Ryeol;Lee Sa-Ro
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.459-475
    • /
    • 2004
  • The geology of the Kualakulun area in Middle Kalimantan, Indonesia comprises Permian to Carboniferous Pinoh Metamorphic Rocks and Cretaceous Sepauk Plutonics of the Sunda Shield, late Eocene Tanjung Formation, Oligocene Malasan Volcanics, Oligocene to early Miocene Sintang Intrusives and Quaternary alluvium. Sepauk Plutonic rocks are classified as the calc-alkaline series and the S-type granite. Sintang Intrusive rocks are basic-intermediate and intermediate rocks, and consists of basalt, basaltic andesite, basaltic trachyandesite and trachyandesite. The Malasan Volcanics are characterized by intermediate dacitic pyroclasticl and minor lavas and belong to the subalkaline (calc-alkaline and tholeiitic) series. The whole-rock K-Ar ages of the fine-grained biotite granites and medium-grained granitoids were determined to be 100.5-106.5 Ma and 91.9-102.6 Ma, respectively. The whole-rock K-Ar age of the diorite is 89.1 Ma. K-Ar ages of the Malasan Volcanics and Shintang intrusives show 31.5-36.8 Ma and 24.6-34.5 Ma, respectively, and correspond to the Tertiary time.

Geochemistry of Cu-Pb-Zn-Ag Deposits from the Euiseong Mineralized Area (의성 광화대 동-연-아연-은 광상의 지화학적 연구)

  • Chi, Se-Jung;Doh, Seong-Jae;Choi, Seon-Gyu;Lee, Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.22 no.3
    • /
    • pp.253-266
    • /
    • 1989
  • The Cu-Pb-Zn-Ag hydrothermal vein type deposits which comprise the Dongil and Dong-cheogogsan mines occur within the Cretaceous sedimentary rocks in the Euiseong Basin of the southern Korean peninsula. The ore mineralization is contained within three stage(I,II and III) quartz and calcite veins. Ore minerals occur as dominant chalcopyrite, galena, sphalerite, tetrahedrite and Pb, Ag, Sb and Bi-bearing sulfosalts. Stage I ore minerals were deposited between $400^{\circ}C$ and $200^{\circ}C$ from the fluid with moderate salinities(7.0 to 4.5 eq. wt. % NaCl). Evidence of boiling suggests pressure of less than 150 bars during stage I mineralization. This pressure corresponds to maximum depths of 650 m and 1700 m, respectively, assuming lithostatic and hydrostatic loads. The data on mineralogy, temperature and salinity, together with information on the solubility of Cu complex, suggest that Cu deposition is a result of boiling coupled with declining temperature from $350^{\circ}$ to $250^{\circ}C$ or declining log $a_{o_2}$(from -29.8 to -35.9 atm.)and increasing in pH. Pb, Ag, Sb and Bi-bearing sulfosalts were deposited by cooling and dilution at temperature of less than $250^{\circ}C$ from the ore fluid with less than -35.9 atm. of log $a_{o_2}$.

  • PDF

Mineralogy and Geochemistry of Green-colored Cr-bearing Sericite from Hydrothermal Alteration Zone of the Narim Gold Deposit, Korea (나림 금광상의 열수변질대에서 산출되는 녹색크롬-견운모의 광물학적 및 지구화학적 특징)

  • Lee, Hyun Koo;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.279-289
    • /
    • 1997
  • Dark to pale green-colored, Cr-bearing sericites from hydrothermal alteration zone of the Narim gold deposit were investigated mineralogically and geochemically. The alteration zone is composed mineralogically of quartz, carbonate minerals and green sericite with minor amounts of chlorite, barite and sulfide minerals (pyrite, sphalerite, galena). The zone is enriched in As (967 to 1520 ppm), Cu (31 to 289 ppm), Ni (1027 to 1205 ppm), Pb (0.20 to 1.24 wt.%) and Zn (1.03 to 1.07 wt. %) compared with fresh rocks such as granitic gneiss, porphyritic biotite granite and basic dyke. The Cr, probably the chromophore element, is highly enriched in the alteration zone (1140 to 1500 ppm), host granitic gneiss (1200 ppm) and porphyritic biotite granite (1200 ppm). Occurrence and grain size of sericite are diverse, but most of the Cr-bearing sericites (150 to $200{\mu}m$ long and 20 to $30{\mu}m$ wide) occur along the boundaries between ore veins and host rocks (especially basic dyke and granitic gneiss). X-ray diffraction data of the sericite show its monoclinic form with unit-cell parameters of $a=5.202{\AA}$, $b=8.994{\AA}$, $c=20.103{\AA}$, ${\beta}=95.746^{\circ}$ and $V=935.83{\AA}^3$, which are similar with the normal 2M1-type muscovite. Representative chemical formula of the sericite is ($K_{1.54}Ca_{0.03}Na_{0.01}$)($Al_{3.42}Mg_{0.38}Cr_{0.14}Fe_{0.06}V_{0.02}$)($Si_{6.69}Al_{1.31}$)$O_{20}(OH)_4$. The Cr content increases with decrease of the octahedral Al content, and ranges from 0.36 to 2.58 wt.%. DTA and TG curves of the sericite show endothermic peaks at $342^{\circ}$ to $510^{\circ}$, $716^{\circ}$ to $853^{\circ}$ and $1021^{\circ}C$, which are due to the expulsion of hydroxyl group. The total weight loss by heating is measured to be about 8.8 wt. %, especially at $730^{\circ}C$. Infrared absorption experiments of the sericite show broad absorption band due to the O-H bond stretching vibration near the $3625cm^{-1}$, coupled with the 825 and $750cm^{-1}$ doublet. The vibration bands related with the H-O-Al and Si-O-Al bonds occur at $1030cm^{-1}$ and 500 to $700cm^{-1}$, respectively. Based on paragonite content of the sericite, the formation temperature of the Narim gold deposit is calculated to be $220{\pm}10^{\circ}C$.

  • PDF

Geochemistry of Stable Isotope and Mineralization Age of Magnetite Deposits from the Janggun Mine, Korea (장군광산(將軍鑛山) 자철광상(磁鐵鑛床)의 광화시기(鑛化時期) 및 안정동위원소(安定同位元素) 지화학(地化學))

  • Lee, Hyun Koo;Lee, Chan Hee;Kim, Sang Jung
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.411-419
    • /
    • 1996
  • The Janggun magnetite deposits occur as the lens-shaped magnesian skarn, magnetite and base-metal sulfide orebodies developed in the Cambrian Janggun Limestone Formation. The K-Ar age of alteration sericite indicates that the mineralization took place during late Cretaceous age (107 to 70 Ma). The ore deposition is divided into two stages as a early skarn and late hydrothermal stage. Mineralogy of skara stage (107 Ma) consists of iron oxide, base-metal sulfides, Mg-Fe carbonates and some Mg- and Ca-skarn minerals, and those of the hydrothermal stage (70 Ma) is deposited base-metal sulfides, some Sb- and Sn-sulfosalts, and native bismuth. Based on mineral assemblages, chemical compositions and thermodynamic considerations, the formation temperature, $-logfs_2$, $-logfo_2$ and pH of ore fluids progressively decreased and/or increased with time from skarn stage (433 to $345^{\circ}C$, 8.8 to 9.9 atm, 29.4 to 31.6 atm, and 6.1 to 7.2) to hydrothermal stage (245 to $315^{\circ}C$, 11.2 to 12.3 atm, 33.6 to 35.4 atm, and 7.3 to 7.8). The ${\delta}^{34}S$ values of sulfides have a wide range between 3.2 to 11.6‰. The calculated ${\delta}^{34}S_{H_2S}$ values of ore fluids are relatively homo-geneous as 2.9 to 5.4‰ (skam stage) and 8.7 to 13.5‰ (hydrothermal stage), which are a deep-seated igneous source of sulfur indicates progressive increasing due to the mixing of oxidized sedimentary sulfur with increasing paragenetic time. The ${\delta}^{13}C$ values of carbonates in ores range from -4.6 to -2.5‰. Oxygen and hydrogen isotope data revealed that the ${\delta}^{38}O_{H_2O}$ and ${\delta}D$ values of ore fluids decreased gradually with time from 14.7 to 1.8‰ and -85 to -73‰ (skarn stage), and from 11.1 to -0.2‰ and -87 to -80‰ (hydrothermal stage), respectively. This indicates that magmatic water was dominant during the early skarn mineralization but was progressively replaced by meteoric water during the later hydrothermal replacement.

  • PDF

Occurrence and Geochemistry of Argyrodite, a Germanium-Bearing Mineral(Ag8GeS6), from the Weolyu Ag-Au Hydrothermal Vein Deposits (월류(月留) 은(銀)-금(金) 열수광상(熱水鑛床)에서 산출된 함(含) Ge 광물(鑛物)인 Argyrodite의 산상(産狀)과 지구화학(地球化學))

  • So, Chil-Sup;Yun, Seong-Taek;Choi, Seon-Gyu
    • Economic and Environmental Geology
    • /
    • v.26 no.2
    • /
    • pp.117-127
    • /
    • 1993
  • Ag-Au vein ores from the Weolyu mine, Youngdong district, contain significant germanium (up to 145g/t, average 34.9g/t), in the form of argyrodite ($Ag_8GeS_6$). Mineral chemistries of argyrodite and its associated minerals were determined by electron probe microanalysis. Twenty eight elements in thirteen ore samples were analyzed using an ICP mass spectrometer. Argyrodite occurs in the paragenetically later mineral assemblage consisting of carbonates+quartz+native silver+argentite+Ag-sulfosalts, indicating that the germanium mineralization represents the culmination of a complex mineral sequence which includes early gold and late silver deposition. The mean formula of the argyrodite is $Ag_{7.90}\;(Ge_{0.76}Sn_{0.04})S_6$, with minor amounts of Cu, Fe, Sb, As, Sn, and Zn. The Weolyu argyrodite shows systematic substitutions of Ag by Cu, and of Ge by Sb. Chemical analyses of vein ores indicate that metals were precipitated in the order of $Fe{\rightarrow}Pb$, $Zn{\rightarrow}Cu{\rightarrow}Ag$, Sb, As, Ge. Germanium has a strong geochemical affmity with As and Sb, and Cu, Pb, Zn, Mo, and Sr show weak positive correlations with Ge. Germanium deposition at Weolyu was mainly a result of cooling of hydrothermal fluids (down to $175^{\circ}C{\sim}210^{\circ}C$, due to increasing involvement of cooler meteoric waters in the epithermal system.

  • PDF

Studies on Fluid Inclusion and Pyrite Geochemistry in the Moisan Au-Ag Deposit, Haenam District, Korea (해남 모이산 금-은 광상의 유체포유물 및 황화물 지구화학 연구)

  • Park, Sol;Seo, Jung Hun;Kim, Chang Seong;Yang, Yoon-Seok;Oh, Jihye;Kim, Jonguk
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.221-234
    • /
    • 2020
  • We occur together with telluride minerals. Fluid inclusions in the euhedral quartz crystals are mainly aqueous liquid-rich inclusions, which have salinities about 0.18-2.24 wt% NaCl equivalent. Some quartz vein contains aqueous vapor-rich inclusions as well. Homogenization temperatures of the assemblages of the liquid-rich inclusions are about 141-384 ℃, and the temperatures are lower at the shallower vein samples. In the high Au-Ag grade depth intervals, relatively deeper fluids have relatively higher salinities and homogenization temperatures, while shallower fluids show somewhat wider ranges. These might indicate that the deep Au-Ag bearing hydrothermal fluids at the Moisan area experienced phase separation as well as mixing with meteoric water by decreasing pressure. Au-Ag precipitation in the Moisan deposit is not associated with pyrite, but pyrite include Au-Ag bearing phase as an inclusion, which might possibly be tellurides or electrum. Au/Ag ratios in the Au-Ag bearing phase do not change with different depth.

Modeling of Hydrocarbon Generation and Expulsion in the Tyee Basin, Oregon Coast Range, USA (미국 북서부 오레곤주 타이분지 내 탄화수소 생성과 배출에 대한 모델링 연구)

  • Jang, Hee-Jeong;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.42 no.1
    • /
    • pp.55-72
    • /
    • 2009
  • The timing of hydrocarbon generation and expulsion from source rocks can be evaluated by reconstructing the geohistory of the basin using petroleum system modeling. The Tyee basin is generally considered having a high hydrocarbon generation potential For the southern part of the basin, the basin evolution from a structural and stratigraphic points of view, the thermal history, and the burial history were reconstructed and simulated using numerical tools of basin modeling. An evaluation of organic geochemistry for the potential source rocks and the possible petroleum systems were analysed to improve the understanding of the hydrocarbon charge of the basin. Organic geochemical data indicate that the undifferentiated Umpqua Group, mudstones of the Klamath Mountains, and coals and carbonaceous mudstones in the Remote Member and the Coquille River Member are the most potential gas-prone source rocks in the basin. The relatively high maturity of the southern Tyee basin is related to deep burial resulting from loading by the Coos bay strata. And the heating by intrusion from the western Cascade arc also affects to the high maturity of the basin. The maturation of source rocks, the hydrocarbon generation and expulsion were evaluated by means of basin modeling. The modeling results reveal that the hydrocarbon was generated in all potential source rocks and an expulsion only occurred from the Remote Member.